CFOSAT: China France Oceanography Satellite

New products for the observation of wind and waves

C. Tourain(1), C. Tison(1), P. Castillan(1), J.M. Lachiver (1), D. Hauser(2)

(1) CNES, Toulouse, France
(2) LATMOS, CNRS, UVSQ, UPMC, Guyancourt, France
CFOSAT: A China/France world premiere for oceanography

Main Objective: Measure at the **global scale** ocean surface **wind** and **waves** spectral properties

SCAT
- Wind scatterometer
 - Fan beam concept
 - Large swath
 - Rotating antenna: 3 rpm
 - Incidences between 26° and ~50°
 - Provides
 - σ_0
 - Ocean wind vectors

SWIM
- Wave scatterometer
 - Ku band real aperture radar,
 - Sequential illumination with 6 incidence angles: 0°, 2°, 4°, 6°, 8°, 10°
 - Rotating antenna (all azimuth direction acquisition): 5.6 rpm
 - Provides:
 - Directional wave spectra
 - Significant wave height and wind speed
 - σ_0 mean profiles, 0 to 10°
Mission status

2018 October 29th Successful launch:

- Very precise injection with the Long March 2 launcher
- Instruments switched ON
 - SCAT: October 31st
 - SWIM: November 1st
- Both ground segments functional less than one week after launch
 - First SWIM wave spectra and SCAT wind map produced on November 4th

2018 December 17th SWIM commissioning keypoint:

- Functional behavior validated
- Very good instrument performances observed
Mission status

2019 July 1-3: CAL/VAL workshop

- CAL/VAL analyses of verification phase presentations
 - Report on “the SWIM CAL/VAL at the end of the verification phase”: available

2019 September 23rd – 26th: 1st international Science Team Meeting in Nanjing (China)

- 80 international attendees
- CAL/VAL synthesis for both instruments
- First feedbacks from scientific teams
- Agreement on data quality
- Data release recommendation
Mission status

CFOSAT Science Team established

- More than 50 scientific teams leaded by:
 - France
 - PI: Danièle Hauser (LATMOS)
 - Co-PI: Lotfi Aouf (Météo-France)
 - China
 - PI: LIU Jianqiang (NSOAS)

2019 November: data release to all scientific users

- Data already available to science team
- CNES/CNSA Joint Steering Committee expected for formal open worldwide
- CFOSAT enters in routine exploitation
CFOSAT SCAT: firsts results

Wind products

- Wind vectors globally consistent with ECMWF model data
 - Wind speed: 1.3 – 1.4 m/s RMS discrepancies
 - Wind direction: 15 – 17° RMS discrepancies

- Good wind fields consistency with NDBC buoy
 - Wind speed about 1.0 m/s,
 - Wind direction about 16°.
CFOSAT SWIM: firsts results (1/3)

Nadir products

- Operational implementation of the Adaptive retracking Algorithm
- Despite SWIM low measurement rate (5Hz vs 20Hz), remarkable results:
 - Very good consistency with model and altimetry missions
 - Improved performances w.r.t. current operational altimetry retracking
 - SWH and Sigma0 restitution noise reduction

See A. Ollivier specific presentation in CFOSAT Splinter (Thursday 11:20)
CFOSAT SWIM: firsts results (2/3)

Off-nadir sigma0 product: sigma0 profiles

- Ocean surface:
 - Trends consistent with TRMM/GPM

- Sea ice and land surface
 - good sensitivity and consistent with literature

Wave spectra

- 1D spectra
 - Shape consistent with model and buoy data
 - Good wavelength estimation
 - Some parasite peaks to be filtered out
CFOSAT SWIM: first results (3/3)

Wave spectra

- 2D spectra:
 - Overall good correlation with model spectra,
 - Waves detected for wavelengths from \(\approx 60\) m to \(\approx 600\) m,
 - Overall good agreements for wavelength and directions,
 - Some bias in wave height, ongoing work.

See D. Hauser presentation in CFOSAT Splinter (Thursday 11:00)
Conclusion

CFOSAT data will be available very soon (November)

- SWIM data

- SCAT Data
 - On NSOAS website: https://osdds.nsoas.org.cn
 - And on AVISO website

CFOSAT data are ready to use for science

- All SWIM performances and limitations described in the document
 REPORT ON THE SWIM CAL/VAL AT THE END OF THE VERIFICATION PHASE (AVISO website)

SWIM: a very innovative instrument

- Strong potential for many applications
- Processing and products will keep improving
- Feedbacks from users welcomed

CFOSAT data are here.
Make the most of them!
Thank you for your attention!
BACKUP
SWIM NRT Products

L1a
Calibrated waveform, geocoded @ 0, 2, 4, 6, 8, 10°
+ nadir waveform non calibrated, compensated for Instrument automatic gain

Nadir products
(0°)

Wave products
(6°, 8°, 10°)

σ0 products
(0°, 2°, 4°, 6°, 8°, 10°)

L1b
• Modulation spectrum

L2
• SWH, wind speed
• Ice and land properties

L2
• Omnidirectional and 2-D wave spectra
• Partitioning and associated parameters (Hs, peak wave number and peak direction)

L2
• σ0 mean profiles versus incidence and azimuth
SWIM NRT Wave products

L1a: Calibrated wave form, geocoded (per cycle, per azimuth, incidence = 6, 8 or 10°)

L2: Wave slope spectrum and partitions (per box, per beam or merged)

L1b: Modulation spectrum (per cycle, per azimuth, incidence=6, 8 or 10°)

\[P_{\sigma_0} = P_{\text{IR}} \cdot P_m + P_{\text{sp}} \]

\[P_w = \frac{P_m}{MTF} \]

SWH = 2.2 m
\[\lambda_p = 83 \text{ m} \]
\[\phi_p = 12^\circ \]

SWH = 2.5 m
\[\lambda_p = 288 \text{ m} \]
\[\phi_p = 103^\circ \]

SWH = 2.7 m
\[\lambda_p = 129 \text{ m} \]
\[\phi_p = 130^\circ \]

- Mean trend suppression
- Ground projection
- Spectral density

- Speckle + IR correction

- Transfer function estimation and wave slope spectrum computation
- 15°-azimuth averaging
- Partitioning and physical parameter computation
SWIM NRT σ^0 profile

L0: non calibrated wave form (per cycle, incidence, azimuth)

- σ^0 estimate from radar equation
- Geocoding

L1a: Calibrated wave form, geocoded (per cycle, incidence, azimuth)

- Combining incidences within boxes

L2: Normalized radar cross-section profiles
From 0° to 11° (per 15°-azimuth range) at a scale of 70 x 90 km and associated radiometric accuracy