Assessment of ICESat-2 Performance over the Arctic Ocean During its First Year in Orbit

Sinéad Louise Farrell1

K. Duncan1, E. Buckley1, J. Kuhn2, L. Connor2, E. Leuliette2

1University of Maryland 2NOAA Laboratory for Satellite Altimetry
<table>
<thead>
<tr>
<th>YEAR</th>
<th>00</th>
<th>05</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANETARY COVER</td>
<td>81.5°</td>
<td>81.5°</td>
<td>86°</td>
<td>88°</td>
<td>88°</td>
<td>369 days</td>
</tr>
<tr>
<td>Orbits</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Repeat</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>91</td>
</tr>
</tbody>
</table>

Partial Polar Cover:
- ERS-1 (ESA) - 81.5°, 35 days
- ERS-2 (ESA) - 81.5°, 35 days
- ENVISAT (ESA) - 86°, 91 days
- ICESat (NASA) - 88°, 91 days
- IceBridge (NASA Airborne) - 88°, 369 days
- ICESat-2 (NASA) - 88°, 369 days
- CryoSat-2 (ESA) - 88°, 369 days
- Sentinel-3A (EU) - 81.5°, 27 days
- Sentinel-3B (EU) - 81.5°, 27 days
- Sentinel-3C (EU) - 81.5°, 27 days
- Sentinel-3D (EU) - 81.5°, 27 days

Polar Orbit:
- Past
- Operating
- Approved
- Proposed

Spacecraft Timeline:
- Sinéad L. Farrell, University of Maryland
- 24 October 2019
- OSTST 2019, Chicago, USA
NASA successfully launched ICESat-2 from Vandenberg Air Force Base, California, on 15th Sept. 2018, at 13:02 UTC!

ATLAS: Advanced Topographic Laser Altimeter System
Single laser pulse (532 nm) split into 6 beams; photon counting
Redundant laser and detector

- **Surface Elevation**: over ice-covered ocean (ATL07), provides height measurements of level sea ice floes, ridged/deformed sea ice floes, lead/sea surface height (SSH)
- **Sea Ice Freeboard (ATL10)**: routine measurements of sea ice freeboard in both Arctic and Southern Oceans, available along-track

- Beams arranged in pairs (strong/weak beam combination)
- Pair spacing: ~ 90 m, for slope determination
- Spacing between pairs: ~ 3 km, for spatial coverage
- Footprint spot size: ~ 14 m
- PRF: 10 kHz (0.7 m sampling along-track)
- Coverage: 88 °N to 88 °S
- Exact Repeat: 91 days; Sub-cycles: ~4 days; 29 days

More info. and orbits:
ATL07 = sea ice surface elevation
ATL10 = sea ice freeboard (both hemispheres)
ATL07 and ATL10 are *per orbit* sea ice products
ATL20 *gridded* product will be available later in Fall 2019
Initial Release 001 spans 14 Oct 2018 to 2 May 2019

ATLAS: Advanced Topographic Laser Altimeter System
Single laser pulse (532 nm) split into 6 beams
Photon counting detector
• ICESat-2 transect over Saint Thomas, U.S. Virgin Islands, shows measurements of land surfaces above and below the water surface
• Submerged topography eventually disappears as water depth increases

Credit: Magruder et al., EOS, 2019
ICESat-2 Profiles over the Arctic Sea Ice - October 2018

ATLAS Strong Beam 1

Ice freeboard (3 ft.)

ATLAS Strong Beam 2

rough sea ice floe

ATLAS Strong Beam 3

pressure ridge

Ice freeboard (3 ft.)

rough sea ice floe

lead

new ice

ice floe

lead

pressure ridge

rough sea ice floes
Independent, multi-sensor sea ice observations from ASCAT (left) and CryoSat-2 (right), show remarkable consistency with ICESat-2 (middle)
First coincident *airborne* laser and radar altimetry data were collected over sea ice during the joint NOAA/NASA/ESA Laser Radar Altimetry (LaRA) field campaign, May 2002 (Giles *et al*., 2007).
LaRa Freeboard: Dec 2018 – April 2019

First Year Ice

<table>
<thead>
<tr>
<th>Year</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018_12</td>
<td>0.09</td>
<td>0.06</td>
</tr>
<tr>
<td>2019_01</td>
<td>0.11</td>
<td>0.05</td>
</tr>
<tr>
<td>2019_02</td>
<td>0.12</td>
<td>0.06</td>
</tr>
<tr>
<td>2019_03</td>
<td>0.13</td>
<td>0.06</td>
</tr>
<tr>
<td>2019_04</td>
<td>0.14</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Multiyear Ice

<table>
<thead>
<tr>
<th>Year</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018_12</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>2019_01</td>
<td>0.16</td>
<td>0.05</td>
</tr>
<tr>
<td>2019_02</td>
<td>0.16</td>
<td>0.05</td>
</tr>
<tr>
<td>2019_03</td>
<td>0.17</td>
<td>0.06</td>
</tr>
<tr>
<td>2019_04</td>
<td>0.18</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Insights from early LaRa Freeboard comparisons indicate potential for satellite-derived snow depth.

LaRa freeboard is ~ 55-60% snow depth (April). Distributions mirror snow distributions on FYI/MYI.
NASA IceBridge Validation Flights

ICESat-2 Orbits:
- 2019-04-08
- 2019-04-10
- 2019-04-12
- 2019-04-19
- 2019-04-22

ΔT (OIB – satellite):
- 0 hrs. IC2 RGT 157
- 0 hrs IC2 RGT 189
- 0 hrs IC2 RGT 218
- 0 hrs IC2 RGT 325
- +38 mins. IC2 RGT 371

CryoSat-2 Orbits:
- 2019-04-06
- 2019-04-06

ΔT (OIB – satellite):
- +2.73 hrs
- +2.92 hrs

Sentinel-3B Orbit
- 2019-04-20

ΔT (OIB – satellite):
- 0 hrs

Airborne Validation Experiments – April 2019

Sinéad L. Farrell, University of Maryland

24 October 2019

OSTST 2019, Chicago, USA
Sea Ice Conditions on 10 April 2019:

- Validation flight conducted in southeastern Beaufort Sea
- A mix of older multi-year sea ice floes in a matrix of seasonal ice
- Approximately 390 km of sea ice was surveyed

Observations:

- ICESat-2 ATLAS
 - Assessment of freeboard on 3 strong ATLAS beams
- AWI IceBird Airborne Laser Scanner (ALS)
 - High-resolution sea ice topography
- AWI IceBird – EM Bird
 - Sea ice thickness
- Sentinel-1 A/B, SAR: cross and co-pol

Temporal Coincidence:

- ICESat-2, orbit 0189: 15:06:12 - 15:07:08
- AWI IceBird aircraft survey start: 15:06:55, end: 18:53:26
- Sentinel-1B SAR image acquisition: 15:27:54
ice freeboard

σ0 (dB)

72° - 73°

72.5° - 73°
Evaluating ICESat-2 Sea Ice Freeboard

70.3 – 71.4° N
Level first-year ice

71.4 – 72.6° N
Mix of multiyear and first-year ice

72.6 – 74.0° N
Heavily deformed multiyear ice

70.3 – 74.0° N
ATLAS 3 Strong Beams (Full 390 km Transect)

--- Airborne --- ICESat-2

<table>
<thead>
<tr>
<th>Mean Diff (IC2 – ALS)</th>
<th>+0.03 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Diff (IC2 – ALS)</td>
<td>+0.00 m</td>
</tr>
<tr>
<td>Modal Diff (IC2 – ALS)</td>
<td>-0.05 m</td>
</tr>
</tbody>
</table>

- AWI IceBird ALS Freeboard
- NASA ICESat-2 ATL10 Freeboard

--- Airborne --- ICESat-2

<table>
<thead>
<tr>
<th>Mean Diff (IC2 – ALS)</th>
<th>+0.03 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Diff (IC2 – ALS)</td>
<td>+0.04 m</td>
</tr>
<tr>
<td>Modal Diff (IC2 – ALS)</td>
<td>+0.05 m</td>
</tr>
</tbody>
</table>

- AWI IceBird ALS Freeboard
- NASA ICESat-2 ATL10 Freeboard

--- Airborne --- ICESat-2

<table>
<thead>
<tr>
<th>Mean Diff (IC2 – ALS)</th>
<th>+0.04 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Diff (IC2 – ALS)</td>
<td>+0.08 m</td>
</tr>
<tr>
<td>Modal Diff (IC2 – ALS)</td>
<td>+0.05 m</td>
</tr>
</tbody>
</table>

- AWI IceBird ALS Freeboard
- NASA ICESat-2 ATL10 Freeboard

--- Airborne --- ICESat-2

<table>
<thead>
<tr>
<th>Mean Diff (IC2 – ALS)</th>
<th>+0.04 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Diff (IC2 – ALS)</td>
<td>+0.08 m</td>
</tr>
<tr>
<td>Modal Diff (IC2 – ALS)</td>
<td>+0.05 m</td>
</tr>
</tbody>
</table>

- AWI IceBird ALS Freeboard
- NASA ICESat-2 ATL10 Freeboard

--- ICESat-2 (all) ---

Mean	0.35 m
Sdev	0.24 m
Mode	0.23 m
Median	0.29 m
Min	0.00 m
Max	2.38 m

- ATL10 Freeboard GT1L
- ATL10 Freeboard GT2L
- ATL10 Freeboard GT3L
Lincoln Sea – June 2019
Sea Ice Undergoing Melt, Lincoln Sea, June 2019
First Spaceborne Altimeter Observations of Sea Ice Melt Ponds!!
• ICESat-2 data **publicly** available at: https://nsidc.org/data/icesat-2

• 14 Oct 2018 to 02 May 2019 currently available at NSIDC, Release 001

• Release 002 of ATLAS data being distributed at NSIDC - October 2019 (LIVE: 4:30 pm EDT today!)
 • Reprocessing of Release 001 - fixes to ATBDs (algorithms)

• Data spans: 14 Oct 2018 – 26 June 2019
 • ATL03 data posted first;
 • ATL07/10, ATL06, ATL08 etc. online at NSIDC from end October through mid-November

• Observatory was in safe-hold mode: 27 June 2019 – 9 July 2019: no data collected
• A timing error occurred: 9 July 2019 to 25 July 2019: data potentially recoverable
• Nominal operations: 26 July 2019 to date. 😊

• Data also accessible though Open Altimetry
 https://openaltimetry.org/data/icesat2/
ASCAT Multi-year Ice Extent
ICESat-2 Sea Ice Freeboard
CryoSat-2 Sea Ice Freeboard
LARA* Freeboard ICESat-2 minus CryoSat-2
ASCAT
Multi-year Ice Extent

ICESat-2
Sea Ice Freeboard

CryoSat-2
Sea Ice Freeboard

LARA* Freeboard
ICESat-2 minus CryoSat-2

January 2019
ASCAT Multi-year Ice Extent
ICESat-2 Sea Ice Freeboard
CryoSat-2 Sea Ice Freeboard
LARA* Freeboard ICESat-2 minus CryoSat-2
ASCAT
Multi-year Ice Extent

ICESat-2
Sea Ice Freeboard

CryoSat-2
Sea Ice Freeboard

LARA* Freeboard
ICESat-2 minus CryoSat-2
ASCAT
Multi-year Ice Extent

ICESat-2
Sea Ice Freeboard

CryoSat-2
Sea Ice Freeboard

LARA* Freeboard
ICESat-2 minus CryoSat-2
ICESat-2 Coverage in the Arctic

After 4 days (61 orbits)

After 29 days (442 orbits)
Figure 1. Spot and ground track (GT) naming convention with ATLAS oriented in the forward (instrument coordinate +x) direction.

Figure 2. Spot and ground track (GT) naming convention with ATLAS oriented in the backward (instrument coordinate -x) direction.