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Motivations for TOPEX Reprocessing

e TOPEX Current GDR Product is based on on-board estimations for range , SWH
and Sigma0.

e Side-A altimeter suffered major degradation inducing an increase of about 40-
50 cm for the estimated Significant Wave Height following a quadratic
evolution
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TOPEX Calibrations



TOPEX Point Target Response Calibrations

Topex altimeter was routinely calibrated twice a day

Calibration-1 mode measures the altimeter Point Target Response

The PTR is the fingerprint of the
altimeter.

e Affects the measured waveforms

e Variations of the PTR can change
the estimations for:
» the range (SSH)
» the Significant Wave Height
» the sigma0 (windspeed)

-> WE WANT THE PTR TO BE STABLE
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The routine PTR are not oversampled
(1 point per radar gate)



TOPEX Routine PTR Calibrations

The Side-A evolution is also noticeable in the radar PTR

ROUTINE PTR for Side: A ROUTINE PTR Gate Amplitude Evolution for Side: A
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Increase of secondary lobes amplitude
Follow a quadratic evolution as for SWH evolution



normalized amplitude

In comparison the Side-B PTR is much more stable

ROUTINE PTR for Side: B RO1lJTINE PTR Gate Amplitude Evolution for Side: B
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Sweep Calibrations Mode

SWEEP Calibrations provide oversampled PTR: 64 points per radar gate

July 1998: because of Side-A Ku-Band PTR Comparison
Side-A degradation, 1 (routine and sweep PTR are adjusted for illustration)
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SWEEP calibrations are coherent wrt routine calibrations
-> confirmed the strong evolution of the PTR



TOPEX Waveforms Retracking



Long Time Idea: use the PTR for waveforms retracking

 In GDR, measurements are derived from on-board waveforms parameters
estimations

e Ku-Band and C-Band Waveforms were transmitted to ground
-> allows waveforms expertise and retracking (see “Calibration Data for Retracking TOPEX Data”
poster)

e Previous approach: PTR Gaussian decomposition (E.Rodriguez et Al.)
— Every side lobes are considered individually as gaussians
— Routine PTR are used as an input to derive lobes parameters
— The associated retracking remains analytical
+ Efficient in term of computing time

+ Huge improvement compared to classical single gaussian PTR approach (which is unable to take
into account secondary lobes amplitude variation)

e = New approach: numerical retracking
— Based on the uses of oversampled PTR
— Takes benefit of improved computing capability



Numerical Retracking
-> introducing over-sampled measured PTR

Over-
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Oversampled PTR available?

numerical approach -> requires to use an oversampled PTR

e Side-B:-> 0K
— In-flight sweep calibrations have been performed periodically (1 per
month during half of the Side-B missions, 1 per cycle later)

— In total 148 sweep calibrations available

e Side-A:->NOK

— Only 3 usable sweep calibrations at the end of Side-A mission are
available

— A couple of sweep calibrations have been performed on-ground



Ground SWEEP Calibrations End Of Life SWEEP
Calibrations

Evolution of PTR involves more than just amplitude
of lobes:

1. Frequency shift of lobes

2. General shape of PTR

3. Width of main lobe



Reconstructing Sweep PTR

averaged on-ground sweep PTR
+ averaged in-flight sweep PTR

SWEEP PTR Models
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1. Adjusting scheme
Algorithm to shift frequency and amplitude of lobes
for each model

2. Weighting scheme
The weighting between the two adjusted models is currently
EMainLobe

, Where E reflects the energy of a
EFirstsideLobe

drivenbyr =

lobe.



Topex Oversampled PTR Reconstruction
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Preliminary Results



SWH Comparison
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Similar behavior for cycle 24 and 230. F(D)r cycle 230 SWH in MLE-4 are lower than for GDR
-> expected results
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«10* SWH Ku GDR Cycle:24 Histogram (full-oceans)

x10* SWH Ku MLE-4 Cycle:24 Histogram (full-oceans)
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Cleaner distribution thanks to the waveforms retracking especially for cycle 230
The SWH for cycle 230 are lowered by ~60 cm using numerical approach



Standard Deviation of Topex — Jason-1 Differences
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The std of difference wrt Jason-1 is reduced using MLE-4 retracking
For mode results -> see “Calibration and Validation of Reprocessed TOPEX Geophysical
Data Records” poster from S. Desai et Al. in CalVal session



Conclusion

Method has been fully developed
First results are promising

Still some guestions about the quality of the TOPEX Calibrations (over
compensation of SWH?)

CalVal on-going

Work plan:

— First: Side-B during Jason-1 tandem period
— Full Side-B mission

— Full Side-A mission



Back-up Slides



Timeline

The degradation is
unacceptably high. Side A
is switched to redundant

side B on cycle 236.

Side A PTR degrades, impacting the SWH estimations Side B PTR is
Launch Cal PTR applied daily Cal PTRS;ibb!ﬁed daily
b, .y
round Tests {752 | | | | | [ | | lseln | | [ LI LIILTE Side B |
June 4 July 1998 4 Feb. 199W time
1991 Pre-launch: 2 The PTR

sweep PTRs applied

sweep PTRs are degradation is monthly then every cycles
applied on side-A mitigated: flight /
software is 2006-01-18
uploaded so that a Loss of TOPEX
few sweep PTRs Satellite

can be collected. Last Cycle: 480



On-Ground SWEEP PTR —_—
SidE'A Sweep PTR 1 ~ SWEEPPTR 'a’
SWEEP PTR "b
0.8
A few sweep calibrations are
available, from which 2 averaged 806 Pre-launch (= On-
oversampled PTR (pre-launch and % Ground)
post-launch) are derived o4 1. 04/06/1991 at 15:52
2. 04/06/1991 at 16:13
High-resolution: 16 samples/gate 0.2
for ground calibration and 64
samples/gate for in-flight 0 e L o e g i 2T W, L S R M | S,
calibrations (processed from SDR) 0 %0 10 190 ig?np,e injjﬁ 300 %0 400 40
1 In-Flight S,WEEP PTR End-Of-Life (= In-Flight)
Il SWEEP PTR "a"
il SWEEP PTR "b" 3. 7/10/1998
08 ( - L 4. 15/12/1998
- 1 5. 09/02/1999
E ||
E}M :l : Note: The side-lobes of the in-
I : flight PTRs are larger than the
- ,' : on-ground PTRs. In other
& 1) [ 1;‘\ _ words, it confirms the PTRs
00- i _50_ e ?06. s 1,50 = .\.200‘ \.25{\);\ 3 .3-0{.; g '3_5'[-")- £ ;UO- —.-4-50 have Strongly eVOIVEd between
sample index 1991 and 1998.




SSHA (m) MLE-4 Cycle:24
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SWH Ku MLE-4 Cycle 344 (m) SWH Ku GDR Cycle 344 (m)
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SWH Ku-Band MLE-4 SWH Ku-Band GDR
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Cleaner distribution thanks to the waveforms retracking



Mean of Ku SWH for TOPEX
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The drift on SWH is reduced but a little overcompensated (seems to be related to the
PTR quality and not processing)
Zero significance highlight has a better behavior for the numerical retracking



