

Platform Status

- The Jason-2 satellite bus is **OK**
 - Command / control , RF : PMA : operational, PMB operational
 - On-Board Software, Mass Memory, Telemetry & Telecommand system
 - Thermal aspects:
 - Active thermal control works successfully and is sized with significant margins to meet further worst case conditions
 - Electrical aspects :
 - Satellite power and consumption are within the power, consumption and energetic budgets
 - AOCS (attitude and orbit control system) :

Partially OK

OK

- Gyros 1 and 2 fully operational ... between failures.
- Other AOCS units work nominally, AOCS control laws work as expected when gyros OK
- Exceptional activities :

 Unused equipment destocking (gyro, STR) 	OK
 STR monitoring, SADM expertise, PCE expertise 	OK
Gyro calibration	OK
- 3 SHM recoveries	OK

After more than 10 years in orbit, Jason-2 is currently operational with some unavailability periods

Payload Status

- Core Payload
 - POSEIDON3DORISAMROK
 - GPSP-B OK

- Passengers
 - T2L2 OFF
 - Not restarted after SHM in March 2018.
 - CARMEN2 OFF
 - Official announcement of Carmen 2 loss announced on April 26th, 2016 at REVEX.
 - LPT OK
 - 5 anomalies over the last year, solved by OFF/ON.
- → Fully OPERATIONAL with redundancy available for POS-3, DORIS & AMR
- → Only 1 remaining passenger

Ground & Operations Status

•	Earth terminals:	
	 Usingen - USG1, + USG2 partial shadowing 	OK
	 Wallops, Fairbanks and Barrow (CDAS) 	OK
•	Control Centers:	
	 J2CCC CNES Control center 	OK
	 all the elements are OK 	
	 SOCC NOAA Control center 	OK
	 all the elements are OK 	
•	Instrument Commanding and Monitoring Centers:	
	 SSALTO for CNES instruments 	OK
	 JPL Mission facility for NASA/JPL instruments 	OK
	 Passengers Mission centers 	OK

Gyro anomaly status (1/3)

Reminder: foreseen behaviour at last OSTST

Beta Angle 2017 Jason2

Gyro anomaly status (2/3)

At last OSTST,
the link
between
failures and
gyro
temperatures
(i.e. beta angle)
seemed quite
clear... which
doesn't seem to
be the case
anymore.

Gyro anomaly status (3/3)

- Gyro failures could not be foreseen with sufficient accuracy
 - No actually efficient workaround so far
 - Failure now seems to be linked with: (recovery time vs ON time) ratio
- It was decided at last JSG to swap between gyros 1&2 when failures happen, and restart ASAP (at least for 2 SHM occurrences)
 - After that, a better understanding of gyros behavior will hopefully be achieved, and some workarounds could be decided.
- Side benefits: overall availability is unexpectedly high (89% since) last OSTST) 🙂 !

Routine navigation and guidance

Transfer to i-LRO – July '18

- Local Time at Ascending Node change on the same orbit
- Operations performed as planned
- Very good performance of the propulsion system
- ≈5,6kg of hydrazine still available
 ≈0,55kg used to maneuver to i-LRO

Fuel depletion

- Objective: ensure that as few propellant as possible is left in the tank once Jason-2 becomes non-operational
- Agreed at JSG
- Schedule:
 - 05/02/2018 (Test maneuver) : -1kg (14,9kg remaining)
 - 06/04-23/04/2018 : -6,6kg (8,3kg remaining)
 - 25/09-05/10/2018:
 -3,72kg (goal 3,9kg operations ongoing)
- After the ongoing depletion, enough fuel remains for 2 years of exploitation (+ 1kg margin equivalent to 166 years of drag make-up maneuvers)

Fuel depletion

Principle of the maneuvers

Minimal impact on the ground track

System Requirements and Performances

(x10⁻³) square off nadir angle

Altimeter Antenna
Pointing: typical value
below 0.002°

(Requirement < 0.2°)

pointing performance stable since launch

Poseidon-3 / JASON-2

- Routine / Exceptional calibrations are OK
- Good stability even after SHM
 - > CAL1 Ku-band PTR power

CAL2 Ku-band LPF coeff.

DORIS

Availability = 100% over the period (special events excluded)

DIODE-MOE differences for Jason-2

daily RMS, maneuvers excluded

AMR

Jason-2 AMR performance remains nominal

- Jason-2 AMR performance remains nominal i maintaining stable long-term path delay estimates
- Several "safeholds" and "aging" of the instrument are impacting the calibrations
- New calibration coefficients with the help of cold-sky and on-Earth references have stabilized the performance
- Both Jason-2 and Jason-3 are in good agreement

Jason-2 AMR Ocean Brightness Temperatures Stability

OGDR products Status and performances

- NRT products made by EUMETSAT and NOAA/ESPC Mission Center
- Major changes in the period
 - None on the products
 - No products during SHMs :
 - Februray 20th to March 2nd 2018
 - July 18th to July 25th 2018
- EUMPC: ~100% OGDR successful for PLTM1 acquired at USG
- NOAA ESPC: ~100% OGDR successful for PLTM1 acquired at CDAs
- 100 % OGDR products archived, all disseminated via EUMETCast and via NOAA dissemination services

Operational Geophysical Data Record data latency

EUMETSAT

NOAA

IGDR - status and performances

- Jason-2 IGDR processing is OK (CNES: 100% of possible IGDR successful)
- Latency: 94,09% of products available in less than 1.5 day
- 100% IGDR products archived
- All disseminated via CNES AVISO+ and NOAA dissemination services

GDR - status and performances

- GDR produced by CNES/SSALTO
- Jason-2 GDR processing is OK
 - Data availability & latency OK
 - Systematic validation by JPL
 - Yearly validation reports until end of 2017 available on AVISO+ http://www.aviso.altimetry.fr/en/da ta/calval/systematic-calval.html
- 100% GDR products archived
- All disseminated via CNES AVISO+ and NOAA dissemination services

Performances – missing measurements

Very good data availability over ocean

98.39 % over repetitive phase, calibrations and incidents included

89% over LRO due to SHMs

After removing calibrations and incidents:

>99.9 % data are available over ocean

Performances – Xover

JA2/JA3 performances – Xover

Moyenne

-2

2

10-3

10-3

10-2

Wavenumber (cpkm)

SNR=1 ⇔50 km

10°

10-1

System Requirements and Performances

- Data availability:
 - Requirement: The GDR shall contain 95% of <u>all possible</u> over-ocean data (acquisition and archive) during any 12 month period, with no systematic gaps.
- from July 2017 until July 2018 (i.e. over 1st LRO cycle)

```
⇒ satellite unavailability ~11 % > 4% req

– bus: 11% altimeter: 0.01% Doris: 0% AMR: 0.07%

with planned activities ~0.02 % < 4% req

⇒ ground unavailability ~0.00 % < 1% req
```

→ Global Jason-2 system availability : ~ 89 %

Conclusion – Jason-2 at a glance

- 10th Jason-2 Exploitation Review (REVEX): successful in May 2018
- S/C maneuvers to i-LRO on July 16th and July 18th
- Fuel depletion process ongoing
- Still excellent measurements quality after 10.5 years in orbit, with availability currently reduced to approx. 89%
- Extended Operational Routine Phase up to 31st December 2019.

Items to consider

- → Jason-2 mission extension is granted until December 2019
 - → Roughly geodetic cycle 2 + 6 months
 - → Provided the availability scheme stays approximately the same, is Jason-2 production still satisfactory to users?
 - → Will we still need Jason 2 after 2019?
 - → If yes, what is the requirement after cycle 2?
 - →After cycle 2, a 4km grid should be achieved (with small gaps) : 3rd geodetic cycle with 2km groundtrack translation?

Backup slides

DORIS

- DORIS Availability = 100% over the period
 - No anomaly over the period
 - Effective accuracy as compared to on-board GPS (platform) is stable :
 - 1.8 μs (OGDR & IGDR)
 - ~1.5 μs (GDR)

+ very good performance of the ground network (~90 %)

- Laser ranging array (LRA) is passive (No electronics or software)
- Copy of Jason-1 LRA system, supporting cm-level ranging
- Tracking of Jason-3 and Jason-2 high priority for International Laser Ranging Service (ILRS)
- Performance of Jason-2 LRA has been nominal

Cumulative Passes Per Station for Jason-2

- Top stations by pass volume during Long Repeat Orbit (LRO):
 - Yaragadee, Changchun, Mt. Stromlo, Matera, Zimmerwald