Western Boundary Currents in a changing climate: Case study of the Agulhas Current

Lisa Beal and Shane Elipot

Rosenstiel School of Marine and Atmospheric Science, University of Miami

How are we expecting WBCs to change?

- WBCs warming more quickly than other parts of the ocean
- Westerlies and **Trades intensifying**
- Poleward shift and/ or intensification of WBCs (Wu et al, 2012)?

Wu et al, 2012

Why is understanding these changes important?

- WBCs support the highest air-sea fluxes in the world, fueling mid-latitude storm tracks. (Lee-Thorp et al, 1998; Rouault et al., 2000; Reason, 2001. Fig courtesy M Cronin)
- WBCs are the major carriers of meridional heat transport in the ocean (Trenberth & Caron, 2001; Bryden and Beal, 2001)

What's significant about the Agulhas system?

Rouault et al, 2009

 Increase in Agulhas leakage could strengthen Atlantic overturning at a time when ice sheet melting is predicted to weaken it (Weijer et al, 2002; Biastoch et al., 2009; Beal et al., 2011).

ACT: Agulhas Current Time-series

Beal et al., JPO (2015)

Array Design and Instrumentation

7 full-depth CM moorings, 4 CPIES

Beal et al., JPO (2015)

Meandering and mean structure of the Agulhas Current

Four mesoscale meander events and 14 ring-shedding events during ACT

Mean width of current = 219 km →

...more on meander snapshot see Leber & Beal (2014; 2015)

Lisa Beal and Shane Elipot

Rosenstiel School of Marine and Atmospheric Science, University of Miami

In situ time series of Agulhas Current transport

- T_{box}: Net transport out to mean width★of poleward flow (219 km)
- T_{jet}: Poleward transport out to the first maximum ★of transport-per-unitdistance (T_x), beyond the half width of the jet (110 km).

	T	$T_{\rm box}$
Mean	-84	-77
Median	-79	-76
standard deviation	24	32
decorrelation time scale	7	17
standard error of the mean	2	4
Estimated error (20-h)	14.8	6
Estimated error (mean)	9.0	0.5

Beal et al., JPO (2015)

Lisa Beal and Shane Elipot

Univ of Miami/RSMAS
Phone: +1 305-421-4000
Buoyancy: 520 lbs
Depth Rating: 1500msw
J06196-01
http://www.rsmas.miami.edu/

Can we build a proxy?

Combined EOF on sea surface height and sea surface slope, from along-track AVISO ADT (22 yr)

Modes or variance of transport per unit distance ($T_x = \int v \, dz$) from ACT array (3 yr)

- transport mode
- · narrowing/broadening of jet
- · meandering/eddying of jet
- Variance of sea surface height captures modes of variance of transport (Tx) across the Agulhas Current

22-year proxy of Agulhas Current transport using multivariate regression between 4 PC time-series of along-track ADT and transports T_{jet} and T_{box}

$$T = \alpha_0 + \sum_{k \in \Omega} \alpha_k A_k(t)$$

Only offshore ADT significantly correlates with transport

These
Transport
proxies give
spurious
trends. Need
to allow for
variance of
cross-shore jet
structure.

Lisa Beal and Shane Elipot

Build proxy based on regression of local sea surface slope at each of 9 moorings

- We regress local sea surface slope against vertically integrated cross-track velocity from each mooring (transport per unit distance, T_x)
- We choose dx such that the correlation between dADT/dx and vertically integrated velocity is a maximum (from 27 km at B to 102 km at G)
- Significant annual cycle.
 Resulting trends in T_{jet} and T_{box} are +1 Sv and +2.1Sv, not significant.

This is not what we were expecting. How do we know this proxy trend is robust?

Lisa Beal and Shane Elipot

Agulhas Current is weakening AND broadening

- Core of Agulhas jet is weakening over time, while its offshore flank (>130 km) is strengthening, yet the transport is unchanging.
- Fixed integration T_{box} cannot account for a widening of the jet and neither can a proxy based on total transport.

CCI: Ablain et al. (2012)

Beal and Elipot, Nature, 2017

Lisa Beal and Shane Elipot

Boundary layer has broadened due to an increase in eddy viscosity, or EKE

...although the trend is a small component of the variability

Evidence of increasing EKE in other WBCs

 Similar pattern of sea level trend and increasing EKE in Kuroshio (Uchida & Imawaki, 2008; Yan & Sun, 2015)

Total and eddy transport of East Australia Current

 No trend in EAC transport, but warming (Oliver & Holbrook, 2014) and increasing eddy transport (Cetina-Heredia et al., 2014). Eddying linked with basin-scale wind stress curl (Sloyan & O'Kane, 2015).

Conclusions

- Important to capture the *whole* jet at all time steps: The *boundary* and *jet* transports have different means and variability, particularly during meander events.
- The 3-yr mean Agulhas jet transport is -84 ± 11 Sv at 34 S. This equates with mean Sverdrup transport (60 Sv) + ITF + overturning (another ~25 Sv).
- A 22-year proxy built from a regression between local sea surface slope and in situ transport at each mooring allows for changing horizontal structure (although vertical structure still fixed).
- Agulhas transport is strongest in summer and weakest in winter, similar to the Gulf Stream and Kuroshio.
- From the proxy, the Agulhas Current jet appears to be weakening and broadening over the last two decades, with little change to its total transport.
- Broadening is associated with increasing EKE, and there is evidence of a similar trend in the Kuroshio and East Australia Currents.

