CFOSAT: China France Oceanography SATellite

A new satellite for the observation of wind and waves

cnes

<u>C. Tourain⁽¹⁾, C. Tison⁽¹⁾, D. Hauser⁽²⁾, P. Castillan⁽¹⁾</u> (1) CNES, Toulouse, France (2) LATMOS, CNRS, UVSQ, UPMC, Guyancourt, France

2 © cnes

The CFOSAT mission

CFOSAT: A China/France world premiere for oceanography

Joint measurements of oceanic wind and waves

- **SWIM**: a wave scatterometer (new instrument)
- > SCAT: a wind scatterometer (fan beam concept)

Main Objective : Measure at the global scale ocean surface wind and waves spectral properties

Applications :

- > atmospheric, oceanic and wave forecast systems
- wind and wave climatology
- characterization of processes affecting surface waves
- characterization and modeling of ocean/atmosphere coupling

Secondary objective : Land and sea ice characterization (Sun synchronous polar orbit)

- Sea ice and ice cover
- Land surface (variations of humidity and roughness)

OSTST, Miami, 2017 October 23-27

SCAT: a wind scatterometer

Ku band

- Fan beam concept
- \Rightarrow Combine advantages :
 - Large swath
 - Rotating antenna: 3 rpm
- Incidences between 26° and ~50°

· · cnes · · · ·

SCAT- expected performances

- Mission requirements :
 - Global coverage within 3 days
 - Near Real Time access to the data
 - Data geolocalization better than 5km

Parameters to be measured:

- \pm 1.0 dB for Wind Speed \in [4-6 m/s]
- $\pm 0.5 \text{ dB}$ for Wind Speed $\in [6-24 \text{ m/s}]$

Ocean wind vector

- Wind speed: 2 m/s or 10% (the largest) for Wind speed \in [4-24 m/s]
- Wind direction: ± 20°

4) © cnes

OSTST, Miami, 2017 October 23-27

SWIM

Concept :

- Wave scatterometer:
- measures sea surface backscattering coefficient modulation

Around 8° incidence, for Ku-band :

- radar cross-section insensitive to wind speed
- radar cross-section modulation spectrum proportional to wave slope spectrum

SWIM

Instrument :

- Ku band real aperture radar,
- Sequential illumination with 6 incidence angles !

beams (0°, 2°, 4°, 6°, 8°, 10°

- Rotating antenna: 5,6 rpm
 - all azimuth direction acquisition

SWIM - expected performances

Directional wave spectra, 6° / 8° / 10° beams

λ	$\frac{\delta\lambda}{\lambda}$	φ	Spectral peak power	Resolution cell
70 – 500 m	10%	15°	15% TBC (with real data) (SWH>2m)	70x90 km ²

Significant wave height and wind speed, nadir beam

SWH	WS	
< 10% or 50 cm	2 m/s (TBC)	

 σ_0 mean profiles, 0 to 10° beams

σ_0	$arDelta\sigma_0^{i,j}$	
<1 dB	<0.2 dB	

Mission Status

AIT status:

- SWIM and SCAT instruments integrated on the platform
- Mechanical coupling performed
- Electrical coupling tests between platform and payloads on going

© CNES/DFH, 2017 🛯 🕙 © cnes

cnes · · · ·

Conclusion

Next year, CFOSAT will provide data from two innovative payloads

- A new spaceborne wave scatterometer SWIM
 - > Accurate directional wave spectrum characterization.
 - > Great source of information for understanding of interaction of sea states in altimeter measurements.

A new wind scatterometer SCAT

- Strong potential for wind calculation algorithms validation
- Nadir processing :
 - > New generation algorithms (adaptive retracking, P. Thibaut, IP splinter) implemented in ground segment, operational assessment

SWIM simulation data open to scientists on AVISO+ :

- full CFOSAT cycle available (23/08/2016 -> 05/09/2016)
- L1a to L2 products

http://www.aviso.altimetry.fr/fr/missions/missions-futures/cfosat.html

(please contact cedric.tourain@cnes.fr for more information)

BACKUP

Overview of the ground segment

SCAT NRT products

•

.

SWIM NRTProducts L1a Calibrated waveform, geocoded @ 0, 2, 4, 6, 8, 10° + nadir waveform non calibrated, compensated for Instrument automatic gain σ^0 products Wave products (6°, 8°, 10°) (0°, 2°, 4°, 6°, 8°, 10°) (0°) L1b Modulation spectrum • L2 L2 L2 SWH, wind speed σ^0 mean profiles versus • **Omnidirectional and 2-D** Ice and land properties • incidence and azimuth wave spectra Partitioning and associated Nadir echo • parameters (Hs, peak wave number and peak direction)

-0.05 0.00 0.05 0.10

Peak direction : 310.3135

Reak value + 345.05180m

14

SWIM NRT Wave products

SWIM NRT σ^0 profile

