

European Space Agency

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

OSTST MEETING

24–29 September 2018 Ponta Delgada, São Miguel Island Azores Archipelago, Portugal

Fixed GPS ambiguities orbit solutions

F. Mercier, C. Masson, S. Houry, H. Ait-Lakbir, A. Couhert, E. Jalabert, J. Moyard

Some formulas

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

Zero difference formuation, phase measurements

$$Q = \frac{\gamma \lambda_1 (L_1 + N_1) - \lambda_2 (L_2 + N_2)}{\gamma - 1}$$

Iono free phase, with ambiguities N1 and N2

Nw ambiguity ('widelane')

$$Q = \frac{\gamma \lambda_1 L_1 - \lambda_2 L_2}{\gamma - 1} + \frac{\gamma \lambda_1 - \lambda_2}{\gamma - 1} N_1 - \frac{\lambda_2}{\gamma - 1} N_w$$

$$\lambda_c \text{ 10.7 cm} \qquad 37.7 \text{ cm}$$

One cycle error in Nw ~3.53 cycles in N1

Nw can be identified using measurements only (no model)

Widelane (Melbourne – Wubbena)

Iono-free and geometry-free combination,

Used for N2-N1 ambiguity determination, integer value Kw for each pass

$$\begin{array}{c} \text{Daily GPS satellite bias} \\ (from GRG/IGS solution) \\ L_2 - L_1 - f(P_1, P_2) = K_w + \tau_i - \tau_r \\ \end{array}$$

Phase and pseudo-range combination

The receiver bias is stable over a day (Jason 3, Sentinel 3)

Allows a robust widelane integer ambiguity estimation each pass is fixed independently

Example : widelane

Widelane ambiguity fixing

Jason 3 receiver widelane bias

Small drift observed in τ_r (daily estimation), but due to the GRG solution

The jason 3 receiver bias is stable with time only small variations depending on solar angle (~0.1 cycle)

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

Example : narrowlane

···· § ····

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

Narrowlane ambiguity fixing process

Narrowlane ambiguity fixing process

Fixing algorithm

- simple to implement (works on the residuals only)
- robust to biased passes
- we need an initial good floating solution

Narrowlane ambiguity outliers

Some ~0.5 cycles narrowlane passes on Jason 3

- not due to wrong widelane ambiguity fixing
- not dependent on duration or elevation

Narrowlane ambiguity fixing

~0.5 cycles passes on Jason 3

- ~92 % fixing flying backward
- 100 % fixing flying forward
- intermediate ratios in yaw steering

Implementation

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

Implementation : floating ambiguities orbits

(N1 real)

Implementation : fixing process

Advantage : the daily measurement files can be directly used for other uses (phase maps, long arcs, reduced dynamic...)

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

Results

····· (÷ ·····

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

For the floating solution, the phase map improves the fixing rate (pre-launch phase map for Jason 3, adjusted PCO for Sentinel3)

The phase map construction

- parametric model (Zernike polynomials)
- adjusted simultaneously with drag and prsd models
- fixed ambiguities

improves the transverse observation (for example x axis in fixed yaw)

The final orbit performance (fixed ambiguities) is not very dependent on the phase map used

see poster 'Improved GNSS phase maps, in flight modelling and identification'

Orbit differences (float-fixed), Sentinel 3A

Jason 3 and Sentinel 3 SLR residuals

Yarragadee

SLR residuals scattering smaller with fixed ambiguities

SLR high elevation residuals

Yarragadee

SLR high elevation residuals scattering smaller with fixed ambiguities

Jason 3 and Sentinel 3 SLR residuals

Wettzell

SLR residuals scattering smaller with fixed ambiguities

However, bias ~-2cm for both satellites, probably due to station

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

SLR residuals statistics

SLR rms, all elevations

Conclusion

An efficient and robust ambiguity fixing process has been developed Implemented for Jason 3 and Sentinel 3A for Poe-f standard Significant improvement of the horizontal errors (SLR residuals) Siginificant improvement of the radial error

European Space Agency

2 m

1

