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Monitoring the  Malvinas 
Current volume transport

 ‘93-’95 (Vivier and Provost, 1999 b)

 ‘01-’03 (Spadone and Provost, 2009)

Classic method:

V(x,z,t) = Vm(x,z) + A(x,z) * V’(x,0,t)
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From along track data

Az and Vm from SP09

Mooring deployments at 41 S along
satellite altimetric track #26
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Monitoring the  Malvinas 
Current volume transport

 ‘93-’95 (Vivier and Provost, 1999 b)

 ‘01-’03 (Spadone and Provost, 2009)

Classic method:

V(x,z,t) = Vm(x,z) + A(x,z) * V’(x,0,t)

From along track data

 ’14-’15 (Artana et al., submitted):

Ferrari et al., 2017:
“ gridded data compares better than

along-track data to 20d low-pass
filtered in situ velocities”

Look up table method, LUT
(Koenig et al., 2014)

Mooring deployments at 41 S along
satellite altimetric track #26
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Methodology for reconstructing velocities

V(x,z,t)=B(x,z,V(x,0,t)) with V(x,0,t)=Vs(x,0)+V’(x,0,t)

A) Construction of a look up table (LUT) 
first and last deployments

NO data
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Methodology for reconstructing velocities

V(x,z,t)=B(x,z,V(x,0,t)) with V(x,0,t)=Vs(x,0)+V’(x,0,t)

A) Construction of a look up table (LUT) 
first and last deployments

B) Estimation of a mean surface velocity

C) Validation:

reconstructed velocities compare to

The LUT-reconstructed velocities accurately match the 20-d low-passed in situ 
velocities from all periods  

20 d low-pass filter in situ velocities used in the LUT (first and last period)

independent data not used in the LUT (second deployment)
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24-years long Malvinas current volume transport time series (upper 1500 m)

LUT: µ=37.1±2.6 Sv and σ:6.6±1.0Sv  SP09: µ=33.2 Sv σ= 7.8

• The three in situ measurement 
periods correspond to periods of 
relatively weak MC transport

• No significant trend

LUT-transport from 
fitted shear

yearly average of the MC LUT-transport (fitted shear)

Transport time series for each shear are highly correlated (r=0.99) with rmsd ~1Sv

1993-1995 2001-2003 2014-2015



Distribution of the MC volume transport anomalies

MC volume transport 
asymmetric distribution

LUT-transport from 
fitted shear



Distribution of the MC volume transport anomalies

MC volume transport 
asymmetric distribution

LUT-transport from 
fitted shear

What happens during extreme events?

25 minima 23 maxima
1.5σ
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Extreme events: maxima of the MC transport

SAF: same location as the record length mean
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Extreme events: minima of the MC transport

SAF: loops southward south of the mooring section



Origin of the MC transport maxima

Cyclonic SLA propagate from 48°S and 50°W to the 
north-west following the 4000/5000 m isobath (6km/day)

When they reach 41°S they increase the MC transport 
through a recirculation cell 
 Independent from upstream processes on the slope

Lag 0
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Origin of the MC transport minima

Large and intense positive anomalies shed by the BC overshoot 
managed to propagate westward onto the slope  SAF retreats south

Propagation speed: 2-3 km/day

Extremely high eddy kinetic energy environment 

Lag 0

SLA (cm)
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Summary

• LUT-reconstructed velocities accurately match  20-d low-passed in situ velocities from the 3      
deployments and multi-satellite gridded product.

• 3 types of shear  uncertainty due to  lack of information in upper 300 m.

• 24 year-long transport time series mean: 37.1±2.5 Sv, std: 6.6±1 Sv.

• Transport variations near 41 S  not driven by upstream conditions on the slope 

• Transport maxima  cyclonic anomalies that propagate from the south above 4000m isobath

• Transport minima  large positive sea level anomalies shed by the overshoot.



Summary

• LUT-reconstructed velocities accurately match  20-d low-passed in situ velocities from the 3      
deployments and multi-satellite gridded product.

• 3 types of shear  uncertainty due to  lack of information in upper 300 m.

• 24 year-long transport time series mean: 37.1±2.5 Sv, std: 6.6±1 Sv.

• Transport variations near 41 S  not driven by upstream conditions on the slope 

• Transport maxima  cyclonic anomalies that propagate from the south above 4000m isobath

• Transport minima  large positive sea level anomalies shed by the overshoot.



Summary

• LUT-reconstructed velocities accurately match  20-d low-passed in situ velocities from the 3      
deployments and multi-satellite gridded product.

• 3 types of shear  uncertainty due to  lack of information in upper 300 m.

• 24 year-long transport time series mean: 37.1 ± 2.6 Sv, std: 6.6 ± 1 Sv.

• Transport variations near 41 S  not driven by upstream conditions on the slope 

• Transport maxima  cyclonic anomalies that propagate from the south above 4000m isobath

• Transport minima  large positive sea level anomalies shed by the overshoot.



Summary

• LUT-reconstructed velocities accurately match  20-d low-passed in situ velocities from the 3      
deployments and multi-satellite gridded product.

• 3 types of shear  uncertainty due to  lack of information in upper 300 m.

• 24 year-long transport time series mean: 37.1 ± 2.6 Sv, std: 6.6 ± 1 Sv.

• Transport variations near 41 S  not driven by upstream conditions on the slope .

• Transport maxima  cyclonic anomalies that propagate from the south above 4000m isobath

• Transport minima  large positive sea level anomalies shed by the overshoot.



Summary

• LUT-reconstructed velocities accurately match  20-d low-passed in situ velocities from the 3      
deployments and multi-satellite gridded product.

• 3 types of shear  uncertainty due to  lack of information in upper 300 m.

• 24 year-long transport time series mean: 37.1 ± 2.6 Sv, std: 6.6 ± 1 Sv.

• Transport variations near 41° S  not driven by upstream conditions on the slope .

• Transport maxima  cyclonic anomalies that propagate from the south above 4000m isobath.

• Transport minima  large positive sea level anomalies shed by the overshoot.



Summary

• LUT-reconstructed velocities accurately match  20-d low-passed in situ velocities from the 3      
deployments and multi-satellite gridded product.

• 3 types of shear  uncertainty due to  lack of information in upper 300 m.

• 24 year-long transport time series mean: 37.1 ± 2.6 Sv, std: 6.6 ± 1 Sv.

• Transport variations near 41° S  not driven by upstream conditions on the slope .

• Transport maxima  cyclonic anomalies that propagate from the south above 4000m isobath.

• Transport minima  large positive sea level anomalies shed by the BC overshoot.



Thank you for your attention

CASSIS MALVINAS PROJECT

POSTER SESSION

 Artana et. al

 Ferrari et al.

 Lago et al.

 Saraceno et al.



Mooring velocities
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Extra material: adjustment of the mean surface velocity

Across-track mean surface geostrophic velocity



Vm and Az



Transport maxima and minima



Position of the SAF



Propagation of negative and positive anomalies



Extra material: Scales of variatios

Baroclinic costal trapped waves



MC transport variations and SLA over the SWA

Lag 0:
- Significant regression along the 

slope  train of fast baroclinic
coastal trapped waves (Vivier et 
al., 2001)

- Robust SLA tripole adjacent to 
the section with significant 
regressions

Significant regressions confined 
are confined to the vicinity of 
the moorings apart from 

coastal trap waves there is no 
signal along the MC path at any 
lagMC transport variations 
at 41°S are locally forced and 
disconnected from upstream 

variability


