Altimetry mission performances over the polar ice sheets: Cryosat-2, AltiKa and Sentinel-3A

<u>Aublanc J.</u>; Thibaut P.; Lacrouts, C.: **CLS** Boy F.; Guillot A.; Picot N.: **CNES** Remy F.; Blumstein D.: **LEGOS**

Introduction

- Quantifying mass balance evolution of polar ice sheets is crucial for Sea Level Rise projection
- Three altimetry missions are currently observing polar ice sheets with different modes and frequency bands: Cryosat-2 LRM & SARIn Ku / AltiKa LRM Ka / Sentinel-3A SAR Ku
- Ka band should be much less sensitive to volume scattering than Ku band: penetration depth between 0.1 meter and 0.3 meter [Vincent et al., 2006]
- The improved footprint of the SAR altimetry mode should allow to retrieve fine topographic variations. The measure should be no, or weakly, sensitive to the along-track slope induced error.

This presentation gives an overview of the Cryosat-2, AltiKa and Sentinel-3A performances over Antarctica (studies funded by CNES)

Lake Vostok presentation	Waveforms analysis	Altimetry crossovers	GNSS comparison	ICESat comparison	
	A	ltimetry dat	a		
≻ <u>AltiK</u>	<u>a</u> : L1B waveforms from	on-board process	ing => <u>LRI</u>	<u> M Ka band</u>	
≻ <u>Cryo</u> s	<u>sat-2</u> : L1B waveforms	from CNES CPP	=> <u>LRI</u>	<u> M Ku band</u>	
≻ <u>Senti</u>	i nel-3A : L1B waveforms	s from CNES S3P	P => <u>SAI</u>	<u>RM & P-LRM Ku ba</u>	and
	OSTST	- Miami, USA – Octob	er 23-27, 2017		3

Lake Vostok presentation	Waveforms analysis	Altimetry crossovers	GNSS comparison	ICESat comparison	

Lake Vostok calibration site

Extremely flat

North-south slope tilting 60 m over ~250 km. Average slope is 0,025%. [Siegert, 2005] ; [Ewert, 2012]

Equilibrated local ice-mass balance

Mean snow accumulation: **6.24 cm/yr** [*Ekaykin et al., 2004*]. Mean vertical velocity of snow particle: -**6.17 cm/yr** [*Richter et al., 2014*].

Consequently, surface elevation is stable over time from GNSS studies

From 2001 to 2013: +1mm/yr [*Richter, 2014*] From 2001 to 2015: 0 mm/yr [*Schröder, 2017*]

Almost no slope induced error, surface stable over time: Lake Vostok is a perfect calibration site.

Lake Vostok	Waveforms	Altimetry	GNSS	ICESat	
presentation	analysis	crossovers	comparison	comparison	

Definition of the study area (red line) thanks to a MODIS image (125m resolution) and the DEM from J.Bamber [2009].

Surface slope on the area is in average 0.01%, this leads to theoretically bias the altimeter range of ~3mm (displacement of surface return from nadir to POCA)

Lake Vostok	Waveforms	Altimetry	GNSS	ICESat	
presentation	analysis	crossovers	comparison	comparison	

Comparison of mean Oceanic and Landlce waveforms (lake Vostok)

Methodology: Individual waveforms with a same epoch estimation are normalized and aggregated. For oceanic mean WFs, SWH estimation is 1 meter (+/- 20cm).

Oceanic and landice leading edge have been aligned on the window analysis.

Lake Vostok presentation	Waveforms analysis	Altimetry crossovers	GNSS comparison	ICESat comparison	

Waveform retracking & surface elevation estimation

- A Threshold Peak Retracker (TPR) is chosen to estimate the altimeter range (similar approach than Helm [2014]). In summary, retracking epoch is estimated at "WF max * Threshold".
- > We choose the retracking threshold in order to estimate surface elevation at snow/air interface:

<u>AltiKa LRM Ka:</u> We make the assumption than volume scattering has no impact on the leading edge. Retracking point is positioned at mid-power (<u>50%</u>, same as ocean)

<u>Cryosat-2 LRM Ku</u>: We lower the threshold at <u>25%</u> to account for volume scattering, based on literature [Davis, 1997; Rémy, 2012]

Sentinel-3A SAR Ku: Leading edge looks non-sensitive to volume scattering, we choose <u>80%</u>, same threshold as Ocean. We also estimate surface elevation from PLRM acquisitions with a <u>25%</u> threshold.

Lake Vostok presentation	Waveforms analysis	Altimetry crossovers	GNSS comparison	ICESat comparison	
V	aveform retrac	king & surfac	e elevation es	stimation	
≻ Surface eH = Orbi	levation is computed ac t – retracking range -	d follow: Σ (instrumental corr	ections) - Σ (geoph	ysical corrections)	
Same star	ndard of geophysical co	prrections for all missi	ons		
 Surface el cm of calil 	levation is calibrated or oration)	n Jason-2 using ocea	nic CalVal studies pe	erformed at CLS (seve	ral
Jason-2 s transpon OSTST 20	urface elevation estima der bias is +1mm in av 016]	ition is supposed to b verage [Mertikas, OS	e accurate in absolut TST 2016], SSH bia s	te elevation: s is +1.9cm [Watson,	
	OSTS	T - Miami, USA - Octob	er 23-27, 2017		10

Lake Vostok presentation	Waveforms analysis	Altimetry crossovers	GNSS comparison	ICESat comparison	

Mono-Mission Crossovers

Methodology: Ascending / Descending measurements are directly compared when colocated in time and space: 10 days / 100 meters maximum.

Standard deviation at crossovers

<u>AltiKa (Jan 2015 / Apr 2017):</u> 85 crossovers => STD of ∆h: <u>8.9cm</u>

<u>Cryosat-2 (Jan 2015 / Apr 2017)</u>: 94 crossovers => STD of ∆h: <u>12.4cm</u>

<u>Sentinel-3A (Apr 2016 / Apr 2017)</u>: 35 crossovers => SAR STD of ∆h: <u>17.7cm</u> => PLRM STD of ∆h: <u>14.3cm</u>

Lake Vostok presentation	Waveforms analysis	Altimetry crossovers	GNSS comparison	ICESat comparison	
	Compar	rison to GNSS	acquisitions		
Between 2001 a	and 2015 several kin	ematic GNSS profile	es have been measu	red in the area of	lake
download. Court	esv to Schröder et al	, [2017].			

Two GNSS profiles have been measured in January 2011 & 2013:

- > 2011 GNSS data: 3374 measurements over the study area
- > 2013 GNSS data: 6880 measurements over the study area

Location of the GNSS acquisitions. 2011 (green) ; 2013 (red)

Lake Vostok presentation	Waveforms analysis	Altimetry crossovers	GNSS comparison	ICESat comparison	
	Compari	son to ICESat	acquisitions	5	
 Comparison crossovers (In crossovers (In crossovers)) ICESat brings 1) No sig elevation is 2) Footprint POCA = Uncertainty of [Ewert, 2012] 	with ICESat ele CESat acquisitions s two major advanta nal penetration in estimated at snow/ t is 35 meters radi <i>nadir.</i> of only several ce	vations (GLAH12 between 2003 and 2 iges: to the snowpack. air interface. us. No slope-induc ntimeters over lake	v34) at 2009) Surface red error.		77°S
			L	ocation of the ICESat tracks on the study area (red)	
	OSTS	T - Miami, USA – Octob	ber 23-27, 2017		13

Lake Vost presentatio	ok Wave on anal	forms Alt ysis cros	imetry (ssovers con	GNSS IC nparison com	ESat parison		
Median bias and STD between altimetry and GNSS/ICESat at crossovers							
		Altika LRM Ka	Cryosat-2 LRM Ku	Sentinel-3A PLRM Ku	Sentinel-3A SAR Ku		
GNSS	Median bias (cm)	-22.6	-27.6	-22.2	-21.1		
(~200 Xovers)	STD (cm)	13.2	16.3	17.3	22.6		
ICESat	Median bias (cm)	-25.2	-24.7	-20.8	-18.9		
(~400 Xovers)	STD (cm)	8.4	14.3	15.2	19.9		

Altimetry data are acquired on a same period, from May 2016 to April 2017.

- > The retracking thresholds provide overall a good alignment of the surface elevation between 3 missions.
- Altimetry underestimates surface elevation from <u>20cm to 25cm</u> compared to GNSS and ICESat estimations.
 => Signal penetration into the snowpack
- Sentinel-3A SAR mode has the higher STD due to the high retracking threshold position on the leading edge: 80% (more sensitive to speckle noise and volume scattering).
- AltiKa measure is the most precise. High seasonal surface elevation variations have been noticed in Ku band. They should be related to snowpack properties (not real change of surface elevation) as described by Lacroix [2009], and need to be investigated/characterized.

Lake Vostok presentation	Waveforms analysis	Altimetry crossovers	GNSS comparison	ICESat comparison	
	Bias with IC	ESat acquisiti	ons at cros	sovers	
 Crossovers c spatial co-loca 	omputed over the vation distance of 25 r	whole continent (surfa meters maximum.	ace elevation > 1	000m). Direct crossove	rs:
 Altimetry mea September 20 	asurements are not 16 and April 2017. E	corrected for the slop Bad waveforms are ed	be-induced error a ted.	and are acquired betwe	en
Sentinel-3.	A SAR Ku A Sara Ku A Sara Sara Sara Sara Sara Sara Sara Sar		M Ku are bre bre bre bre bre bre bre bre bre b		49°1 60°1 60°1 60°1 60°1 60°1 60°1 60°1 60
	OST	ST - Miami, <mark>USA - Octo</mark> b	er 23-27, 2017		1

Conclusions

Assessment of the surface elevation over lake Vostok.

- The chosen retracking thresholds provide a good alignment of the absolute surface elevation estimated by the 3 missions.
- Surface elevation is underestimated by 20 to 25 cm compared to GNSS and ICESat acquistions. Most probably due to signal penetration into the snowpack.

The retracking algorithm is empirical and the thresholds are arbitrary. The estimated surface elevation is very sensitive to these thresholds. Preliminary results show that the estimated elevation in <u>Ku band</u> can change by few decimeters because of variation of the snow properties, independently from surface height.

Comparison to ICESat over the whole continent

- LRM missions (Cryosat-2 & AltiKa) have overall similar performances. Precision gets worse with the surface slope intensity.
- SAR mode proves to be non sensitive to the along-track slope and is able to retrieve fine scale topographic variations such as megadunes.

Perspectives to this study

- To characterize precisely the effect of snow properties variations on the altimetry estimations (Ku/ Ka bands) and develop retracking solutions to account for.
- > To assess other areas than lake Vostok, with different surface roughness and snow properties.

Perspectives

On going studies at CLS

Analysis of SARIn baseline C data (from L1B) over the margins steep surfaces

Developing methods for generating a Digital Elevation Model over Antarctica combining Cryosat-2, AltiKa and Sentinel-3A data.

Future missions

The current altimetry missions and the future launches of <u>Sentinel-3B</u> and <u>ICESat-2</u> (2018 both) will provide an opportunity to improve existing DEMs

Cryosat-3 / Sentinel-9 mission: Potentially implementing dual Ku/Ka bands altimeter.

Backup slides

Lake Vostok presentation	Waveforms analysis	Altimetry crossovers	GNSS comparison	ICESat comparison					
Geophysical corrections standards									
		-							
Dry & Wet	tropospheric correctio	n from <u>ECMWF</u>							
> Ionospheri	c correction from the <u>(</u>	<u> Global Ionospheric I</u>	<u>Map (GIM)</u>						
Solid Earth	Tide from <u>Cartwrigh</u>	<u>t model</u>							
Ocean Loa	iding Tide from <u>GOT4</u>	<u>v8</u>							
> Geocentric	Polar Tide from <u>Wah</u>	<u>r [1985]</u>							

