A Correction Factor for Internal Tide Variance in Models

Why is the M₂ internal tide SSH amplitude of a short HYCOM record larger than the amplitude extracted from altimetry?

Objectives

- The internal tide M₂ SSH amplitude decreases as a function of time series duration due to refraction/reflection/ducting by mesoscale background flow
- We will compute the SSH variance decay for each horizontal grid cell for a 6-year long HYCOM simulation
- We will use this decay relation to compute a spatially varying correction factor

 The correction factor can be applied to shorter duration simulations to ensure an "apples to apples" comparison to altimetry

Methodology

- We analyze the **HY**brid **C**oordinate **O**cean **M**odel (HYCOM) simulation Expt_185:
 - > Forward simulation
 - > 8-km horizontal resolution and 32 layers
 - > atmospheric forcing from FNMOC NOGAPS
 - > forced with M₂, S₂, N₂, K₂, K₁, O₁, P₁, Q₁ tidal constituents and SAL correction
 - ➤ 6-year simulation; data output every hour
- Steric SSH time series are split into time series with durations of 2 weeks, 1, 2, 3, 4, 6, 9, 12 months, 2, 3, 4, 6 years
 - \Rightarrow 2-week series has 144 members, 1 month has 72, etc.
- A least squares-harmonic analysis is applied to each member k to extract complex M_2 internal tide amplitude $\dot{\eta}_k = a_k + ib_k$

Total and stationary M₂ tide

- Complex amplitude $\dot{\eta}_k = a_k + ib_k$
- The mean <u>total</u> variance over all members (6 years): $\frac{1}{2}|\dot{\eta}_k|^2 = \frac{1}{M}\sum_{k=1}^M \frac{1}{2}|\dot{\eta}_k|^2$
- The mean <u>stationary</u> variance over all members: $\frac{1}{2} |\overline{\dot{\eta}_k}|^2$
- Non-stationary fraction: $\frac{|\dot{\eta}_k|^2}{|\dot{\eta}_k|^2} |\dot{\eta}_k|^2$
- M₂ tidal variance decreases with time series duration:

Variance for bi-weekly series

Variance as a function of duration

 Total M₂ variance decreases with duration

- Equilibrium time (

)
 is the time at which the
 decay rate has dropped
 below a "threshold" value
 - \Rightarrow the variance no longer decays beyond $T_{\it eq}$

Equilibrium time T_{eq}

- Variance is averaged to 2.5° bins
- $T_{eq} < 6$ years in tropics and Western Boundary currents
- $T_{eq} > 6$ years in subtropical gyres

Variance decay in 3 Locations

- Variance in tropics equilibrates quickly
- Gyres do not appear to equilibrate in HYCOM!!

Correction factor $\frac{var_{eq}}{var_{dur}}$

- We can use the decay relations for expt_185 to compute a spatially varying correction factor
- The correction factor is a function of duration
- Relatively short-duration simulations can be corrected in order to compare them with altimetry

Correction of expt_221

- Correction is applied to 4-km HYCOM expt_221
 - > Harmonic analysis based on 3 months
 - Harmonic analysis based on 12 months

numbers are % difference with altimetry

Conclusions

- Internal tides become non-stationary in the tropics and western boundary currents
- The tidal variance decay and equilibrium times are spatially variable
- The variance decay can be used to correct SSH variance of shorter simulations

Future work:

- Update the altimetry data for this analysis
- Perform a complex modulation on the altimetry data to verify variance decay in the gyres
- Extend the 1-year 4-km simulation to 6 years

M₂ internal tides from Georges Bank

Why no equilibrium in the gyres?

- Compute FFT for the normalized amplitude of the bi-weekly time series with 144 members
- In gyres, modulation periods longer than 1 yr have much energy

Equilibrium time T_{eq}

- Variance is averaged to 2.5° bins
- $T_{eq} < 6$ years in tropics and Western Boundary currents
- $T_{eq} > 6$ years in subtropical gyres
- The smaller T_{eq} , the larger the non-stationary fraction

Scatter plot

Meridional Transect Across Pacific

Global-mean scalar correction

> 3 months: 0.63

> 12 months: 0.8

Scalar correction

- reduces variance closer to altimetry
- But yields a weaker spatial correlation

Scalar correction

12 months

Compute Correction

- How can we compare HYCOM with satellite altimetry?
- We assume
 - equilibrium variance values are reached by 6 years in HYCOM
 - > decay process in HYCOM is realistic
- Equilibrium variance of a data set:

$$var_{eq,data} = \frac{var_{eq}}{var_D} var_{D,data}$$

- Variance of data set: var_{D,data}
 with duration D
- Variance of HYCOM for duration D: var_D
- Equilibrium variance in HYCOM: var_{ea}
- var_{eq,data} can be compared with altimetry variance

Non-stationarity affects variance

- Internal tides are modulated by the time variability of the background flow
- The stronger the modulation, the smaller the variance of the least-squares fit

