

An attempt to map mesoscales and internal tides in a single massive inversion

Clément Ubelmann, Lauren Carrere, Gérald Dibarboure, Y. Faugere and Romain Baghi

OSTST 2017

Context

cnes

- In an effort to improve multi-altimeter maps (DUACS system) we developed a prototype of variationnal mapping to better handle a wide range of scales in time and space
- The signatures of Internal Tides (IT,) contaminating the Mesoscale (MS) estimates, can be estimated in the same inversion by considering time-coherent modes on a multi-year window
- With the improved mapping procedure , an IT field (discarded from the maps) can be estimated
- We propose here to examine the IT field and ask whether it could be of interest to the tidal community ?

Switching to variationnal approach

cnes

• Standard OI formula to map altimetry : $\mathbf{x}_{\mathbf{a}} = \mathbf{B}\mathbf{H}^{\mathrm{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R})^{-1}\mathbf{y}$ Estimate (grid,obs) (obs,obs) (obs,

<u>Main issue:</u> prohibitive cost (α n³) if we extend time window to include a wide range of signals. Limited to typically 1,000km, 30 days in DUACS

signal cov. signal cov. error cov

• We propose a variational approach involving the minimization:

$$U = \eta^{\mathrm{T}} \mathbf{Q}^{-1} \eta + (\mathbf{y} - \mathbf{G} \eta) \mathbf{R}^{-1} (\mathbf{y} - \mathbf{G} \eta)^{\mathrm{T}}$$

State in param space

Distinct MS and IT basis of components Prescribed variance of the components

<u>Benefits</u>: We can extend the inversion window (cost α n) up to decades and introduce IT coherent components

- ✓ Equivalence with OI (provided GQG^T matches the same covariance model)
- ✓ With this setup, MS and IT can be optimally estimated with respect to their covariances
- The solution strongly relies on a suited basis of components for MS and IT (see next slides)

A 3D wavelet basis for mesoscales

CLS

Amplitude-match with the observed mesoscale altimetry spectrum specified in **Q**

In time:

cnes

A column of **G** matrix is the value of the component at obs point.

- A full decomposition over a 30°x30° domain , 20 years, for λ between 1,000km and 80km gives **O(10⁸) individual comp.**

- We don't want to write **G** !! (nobs x ncomp) but only its non-zero segments sequentially for each column to get the product $\mathbf{GR}^{-1}(\mathbf{y} - \mathbf{G}\boldsymbol{\eta})$

A plane wave basis for M2 Internal Tides

A local plane-wave basis, following Zhao et al., 2016, is considered for mode 1 and mode 2

In space:

In time: Component # N $f_{0,0,0} = 1,0$ $f_{0,$

A decomposition over a 30°x30° domain, for mode-1 and mode-2, gives O(10⁵) individual comp.

cnes

- The non-zero segments of the **G** columns are much longer (pluri-annual comp.) but the number of modes is low: we can still easily compute $\mathbf{GR}^{-1}(\mathbf{y} - \mathbf{G}\mathbf{\eta})$ sequentially

Running the MIOST processing system

cnes

(Multi-scale Inversion of Ocean Surface Topography)

CLS

Running the MIOST processing system

cnes

(Multi-scale Inversion of Ocean Surface Topography)

CLS

Assessment of the IT field

Overall consistency

CLS

- More energetic than Ray or Zhao-2016 suggest
- The MIOST solution seems to reduce more variance when applied to independent data

cnes

Amplitude comparisons

Phase comparisons

Six

Considering non-stationary IT ?

cnes

MS-induced non-stationarity: low expectations with such purely statistical mothod (data too sparse)...

 \rightarrow Modelers?

CLS

However, in regions not dominated by MS-induced unstationarity, seasonnal or climatic index modulations could be considered:

Conclusions

• This was an attempt to inverse Mesoscales (MS) and Internal Tides (IT) in one shot, initially performed for the need of improving MS maps.

• The **IT field seems rather consistent with existing IT models**, with a few notable differences:

 \rightarrow Higher level of energy (by ~30%)

 \rightarrow In the regional test, it would exhibit more variance reduction when applied to independent data

• The fields of this first test are available (email us)

• If this solution has an interest to the tidal community, **a global run might be doable** with appropriate effort (computationally expensive : 10¹⁰ parameters, accurate specification of global MS/IT components, ...)

Further perspectives for improvements:

- We may add more tidal constituents
- Compatible with non-stationnary IT, not tested yet
- Activate dynamical advections of the MS components

Backup

Ainsi que les ondes internes si on inverse sur plusieurs années

A 1D Fourier basis for long-wavelength errors

- The along-track input data feature long-wavelength signals (both errors and large-scale SSH.
- The part of this signal not coherent with large-scale patterns (e.g. a single track that pops above others) can be projected in a 1D along-track Fourier basis (discarded) to avoid mesoscale contamination.

Outline

cnes

- Context / Why considering a global Mesoscale (MS) Internal Tide (IT) multi-year inversion?
- Implementation
- First experiment on a regional domain, over a 20-year time window
- Assessment of the IT solution
- Perspectives for solving "slowly non-stationary" IT ?
- Conclusions Next try on the global domain?