

Wavemill: a New Mission for High-Resolution Mapping of **Total Ocean Surface Current Vectors**

A. Martin¹, C. Gommenginger¹, B. Chapron², J. Marquez³, S. Doody⁴, G. Burbidge⁴, B. Dobke⁴, D. Cotton⁵.

¹National Oceanography Centre, UK; ²IFREMER, Fr; ³Starlab, Sp; ⁴Airbus D & S, UK; ⁵SatOC,

Mission Objectives — Sample Submesoscale Dynamics

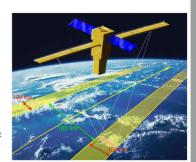
- ▶ Vertical transports and Ocean Biology, role of small scale
 - ▶ 50% of the vertical transport of ocean biogeochemical properties takes place at scales < 100km (Lapeyre and Klein, 2006)
 - Ageostrophic circulation resulting from perturbation of circular eddy flow lead to upwelling velocity ≈10 m/day (Martin & Richards, 2001) - Ekman pumping ≈0.5 m/day
 - ▶ Eddy/wind interactions amplify eddy-induced upwelling (McGillicuddy et al., 2007)
 - Submesoscale processes along the periphery of eddies induce vertical velocities several times larger than those due to eddy/wind interactions (Mahadevan et al., 2008)
- Small scale impact on large scale ocean (Levy, Klein, et al. 2010)
 - ▶ large scale circulation
 - Meridional heat transport
 - ▶ Thermohaline circulation
 - restratification and mixed layer depth

Complementarity with SWOT and Sentinel-3

biogeochemistry on basin scale

Wavemill Concept

► Along-Track Interferometry SAR


- Ku-band
- Two 100km swath
- Two Squinted beams
 - b to derive 2D surface map
 b
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c

Objectives

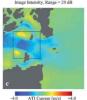
Derive Total Surface Current Velocity Vector

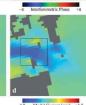
Total meaning: geostrophic + ageostrophic currents. Ageostrophic include tide, Stokes drift, wind drift, Ekman current

- → at 1km (coastal 500m)
- with an accuracy of 5cm/s
- Derive Ocean Wind Vector
 - $\, \triangleright \,$ accuracy < than 2m/s and 20 $^{\circ}$
- ▶ Derive Swell spectrum

Measuring Ocean Surface Currents from Space

What is available?


- ► IR SST & Ocean color
 - > only if there is no clouds and strong and trackable features
- Altimetry
 - ▷ derive geostrophic current
 - □ at time scale about 1 week
 - ▷ at space scale higher than 50km (conventional) or about 10-25km (SWOT, COMPIRA)
- - Doppler Centroid shift Envisat (Chapron et al., 2005) and Sentinel-1
 - Along-Track Interferometry Tandem-X (Romeiser et al., 2013)
- ⇒ Surface motion at 1km of resolution
- ⇒ Only component perpendicular to the track



[Romeiser et al., 2013] Orkney Islands Tandem-X ATI SAR

Mission Challenges

- Data intensive
- Power contraints
- Orbit choices
- Sampling strategy & coverage
- Polarisation & incidence angle options

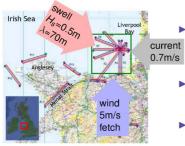
► Complementarity between

high-resolution : SSH (SWOT) & total currents (Wavemill)

Sentinel-3: Synergy with SST,

ocean colour & high-res. SAR

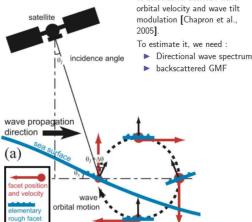
altimetry (SSH, wave height, wind)


Cryosat-2 (SARM, Tropical Pacific) Cryosat-2 (PLRM, Tropical Pacific)

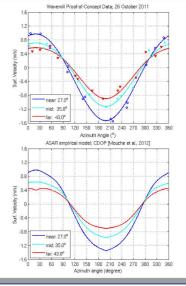
- Currents + winds retrieval
- ▶ Participation to Earth Explorer 9
- ▶ Building the Science Team \Rightarrow email : cg1@noc.ac.uk

Wavemill Airborne Proof-of-Concept — Wind-wave influence on the Doppler signal — Theory, Data & Model

- ▶ Dual beam Along-Track SAR interferometry
- ► Flight, the 26th of October 2011, VV-pol, 25°-45°



Data


▶ In situ directional wave spectrum (up to $\lambda = 5 \text{m}$

- ADCP current at 2-4m below the surface
- MetOffice Wind (1.5km; 1h)

Wave artefact surface velocity — Theory

Line-of-sight velocity is sensitive to correlation between wave

OST-ST, Konstanz, 28-31 October, 2014