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Mean circulation of the Coral Sea Current altimetry Future altimetry
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2) Structure functions from ADCP 3) M2 internal tides estimated with gliders

Method: Method: Results:
Computation of second order structure function D2(r) from observed ADCP Harmonic fitting on M2 period performed on isopycnal - Coherent vertical signal in amplitude and phase is
longitudinal (/) and transverse (L ) velocities separated by distance r displacements estimated over 6-day moving windows captured with this method. The glider samples well the
9 (e.g., Balwada et al., 2016) T M2 internal tide.
_ <[U(ZB) L u(ZB i ’I“)] > — . - ) (e.g. Rainville et al., 2013) e | | |
ypotheses. homogeneity, stationarity - Geographic distribution of M2 internal tides estimated

Data: Two Spray underwater glider sections performed during the

Argument 1: | - Argument 2: - o AltiGlidex Cal/Val campaign for SARAL/Altika (Durand et al., 2017). Only
Second order structure function D2 is A Helmholtz decomposition is possible if one glider section is shown here for August-November 2013.

from gliders is consistent with altimetry.
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Results: . s . 2
- Surface total D2 (Fig. 2a) scales as a SQG-like regime with a slope close to 1. 135 ) 6o e
Rotational motions dominate divergent motions between 2 and 100 km. % -
(¥
- Interior (500m) total D2 (Fig. 2b) scales as a Kolmogorov inertial range with a slope ® 2 2 2

L]
phase

close to 2/3. Rotational motions dominate for scales > 50 km. At smaller scales,
divergent and rotational motions are equivalent.

- D2 slopes (Fig. 2d) show a transition between a surface regime (~1, < 150 m) and an
Interior regime (~2/3, > 200 m)
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Fig. 3.2: M2 amplitude of the glider along-track isopycnal
displacement (colored scatter), averaged over between 200-

Discussion: | | ' | f H 500m, compared to mapped M2 amplitude of Sea Surface
_ _ _ _ _ _ _ o Fig. 3.1: Amplitude (a) and phase (b) of the isopycnal displacements due to Height in colored contours (ranging from O to 4 cm, similar to
Inertia Gravity Waves are likely to dominate scales < 50 km in the interior and dissipate the M2 internal tide, estimated from a glider deployment. Fig, 1,3,, from Ray and Zaron, 2016).

Kinetic Energy but meso and submesoscale motions may dominate the surface motions.
The 2/3 law is consistent with the Garrett and Munk (1972) spectrum, which may
suggest that IGWs cascade KE downscale through wave-wave interaction. The source

of these IGWs at 500 m depih is unexplored 4) HF vertical velocity 9) Keypoints & future work
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Fig. 2: Structure functions averaged over six ADCP shiptrack at 24 m (a) and at 504 m (b) with 22.8° oy —4000 Satellite observations: SST to identify submesoscale
classic turbulence power law (dashed Iir_)es). Descrip.tion of the six shiptrack used for the analysis in _ 164°E 1658 166° 167° 168°E | | fronts / Sentinel 3 for along-track spectrum down to 30 km.
the Vauban Channel (c). Structure function slope estimated for each depth level (d). Fig. 4.2: Standard deviation of HF (130 s < T < 1.5 h) vertical velocity
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