Satellite altimetry today provides exceptional means for absolute and undisputable monitoring of changes in sea level and inland waters (rivers and lakes), over regional to global scales, with accuracies of [mm/yr] and with respect to the center of mass of the Earth. Altimetry also measures and speed on sea surface, sea state, determines ocean circulation, bathymetry, but also monitors melting rates of ice sheets in Arctic, Antarctica, and the Himalayas and observes the amounts of the sea ice and freeboard; All these with an accuracy less than 1 cm from an altitude of 800-1300 km above the Earth’s surface. To continue doing that, altimetry system’s responses have to be continuously monitored and controlled for their quality, biases, errors, drifts, etc. Relations among different missions have to be established on a common and reliable earth-center reference system, maintained for a long period of time (at least 20 years). At this stage, it is high time to (1) Build upon commonly adopted procedures, protocols and uncertainty for Cal/Val, (2) Provide control and checks for monitoring altimeter degradation as fast as possible, (3) Connect one altimetry mission with another, seamlessly and smoothly, (4) Adopt a stable framework for international and inter-disciplinary cooperation, (5) Allow data integration between different scientific fields and disciplines, (6) Ensure Cal/Val procedures, results are well documented and traceable to SI units, (8) Provide transparent protocols and best practices for establishing new Cal/Val site and finally, dissipate responsibility to end user to decide the extent of fit for his requirements.

This presentation generates a summary roadmap to be used by all satellite altimetry Cal/Val community to (1) support accuracy in scientific and monitoring data we produce and evaluate, (2) dissipate responsibility to end user to decide the extent of fit for his requirements, (3) Ensure Cal/Val procedures, results are well documented and traceable to SI units, (8) Provide transparent protocols and best practices for establishing new Cal/Val site and finally, dissipate responsibility to end user to decide the extent of fit for his requirements.

This presentation generates a summary roadmap to be used by all satellite altimetry Cal/Val community to (1) support accuracy in scientific and monitoring data we produce and evaluate, (2) dissipate responsibility to end user to decide the extent of fit for his requirements, (3) Ensure Cal/Val procedures, results are well documented and traceable to SI units, (8) Provide transparent protocols and best practices for establishing new Cal/Val site and finally, dissipate responsibility to end user to decide the extent of fit for his requirements.

The roadmap is based on two main pillars: (1) a series of actions and activities that are ongoing and contribute to the enhancement of the Cal/Val standards and practices (transponder Cal/Val activities and sea-surface Cal/Val activities), and (2) a clear set of recommendations to the scientific community on how to best calibrate satellite altimeters.

The roadmap is based on two main pillars: (1) a series of actions and activities that are ongoing and contribute to the enhancement of the Cal/Val standards and practices (transponder Cal/Val activities and sea-surface Cal/Val activities), and (2) a clear set of recommendations to the scientific community on how to best calibrate satellite altimeters.

The roadmap is based on two main pillars: (1) a series of actions and activities that are ongoing and contribute to the enhancement of the Cal/Val standards and practices (transponder Cal/Val activities and sea-surface Cal/Val activities), and (2) a clear set of recommendations to the scientific community on how to best calibrate satellite altimeters.

The roadmap is based on two main pillars: (1) a series of actions and activities that are ongoing and contribute to the enhancement of the Cal/Val standards and practices (transponder Cal/Val activities and sea-surface Cal/Val activities), and (2) a clear set of recommendations to the scientific community on how to best calibrate satellite altimeters.

The roadmap is based on two main pillars: (1) a series of actions and activities that are ongoing and contribute to the enhancement of the Cal/Val standards and practices (transponder Cal/Val activities and sea-surface Cal/Val activities), and (2) a clear set of recommendations to the scientific community on how to best calibrate satellite altimeters.

The roadmap is based on two main pillars: (1) a series of actions and activities that are ongoing and contribute to the enhancement of the Cal/Val standards and practices (transponder Cal/Val activities and sea-surface Cal/Val activities), and (2) a clear set of recommendations to the scientific community on how to best calibrate satellite altimeters.

The roadmap is based on two main pillars: (1) a series of actions and activities that are ongoing and contribute to the enhancement of the Cal/Val standards and practices (transponder Cal/Val activities and sea-surface Cal/Val activities), and (2) a clear set of recommendations to the scientific community on how to best calibrate satellite altimeters.