

Arctic and Antarctic sea ice freeboard from SARAL/AltiKa

Tom Armitage, Andy Ridout Centre for Polar Observation and Modelling, University College London, U.K.

Contents

- Sea ice freeboard from altimeters
- Freeboard comparison between AltiKa CryoSat-2 (Arctic and Antarctic)
- Comparison with Operation IceBridge
 (Arctic only)
- Implications
 - Snow pack penetration
 - Ice thickness derivation

- Use elevation of leads for sea surface height
- Interpolate underneath ice floes
- Freeboard is elevation of floe above local SSH
 Derive thickness from hydrostatic balance

- Use elevation of leads for sea surface height
- Interpolate underneath ice floes
- Freeboard is elevation of floe above local SSH
 Derive thickness from hydrostatic balance

+ Leads

- Filter by ice concentration
 - Only ice conc > 75%
- Omit freeboard < -20cm
- Grid freeboard for each month

- Airborne campaign linking ICESat-1 and ICESat-2
- Suite of geophysical instruments:
 - Laser scanner
 - Snow radar
 - Radiometer
 - High-res photography
- Five sea ice flight in spring 2013
- Fourteen sea ice flights in spring 2014

- Calculate the "theoretical radar freeboard" from OIB:
 - Radar freeboard measured if snow-ice interface dominates return i.e. snow freeboard minus snow depth
 - Correct for propagation speed in snow pack
- Compare with space/time coincident freeboard from AltiKa and CryoSat-2

$$FB_{tr} = FB_s - d_s - d_s \left(1 - \frac{c_s}{c}\right)$$

- Calculate the "theoretical radar freeboard" from OIB:
 - Radar freeboard measured if snow-ice interface dominates return i.e. snow freeboard minus snow depth
 - Correct for propagation speed in snow pack
- Compare with space/time coincident freeboard from AltiKa and CryoSat-2

$$FB_{tr} = FB_s - d_s - d_s \left(1 - \frac{c_s}{c}\right)$$

- Calculate the "theoretical radar freeboard" from OIB:
 - Radar freeboard measured if snow-ice interface dominates return i.e. snow freeboard minus snow depth
 - Correct for propagation speed in snow pack
- Compare with space/time coincident freeboard from AltiKa and CryoSat-2

Conclusions

- AltiKa provides the first Ka-band sea ice freeboard from space
 - Better than conventional Ku-band altimeters, not as good as CryoSat-2 (over sea ice)
- AltiKa offers a new perspective on radar altimeter interaction with snow on sea ice in both hemispheres
- AltiKa freeboard seems to be closer to the snow freeboard in the Arctic
- When combined with CryoSat-2 could yield new information about the snow layer depth on Arctic sea ice