

Major events since last OSTST (October, 2013)

- Project Milestones
 - Sixth Jason-2 REVEX : May 12-14, 2014
 - EUMETSAT approval for extension up to end 2017

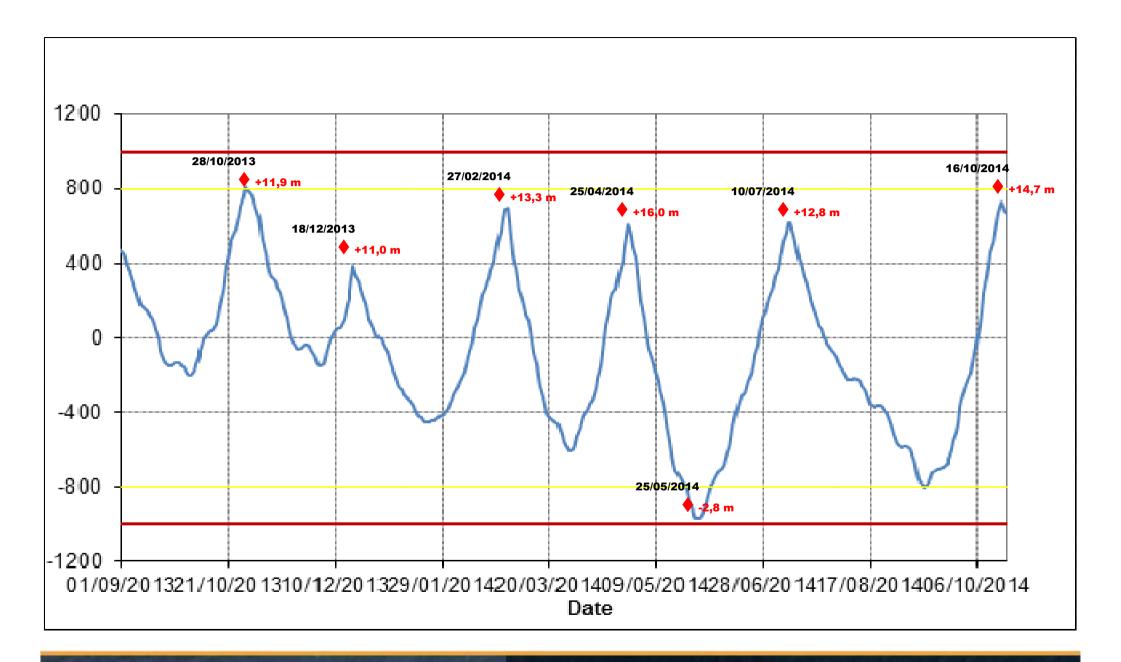
- → successful
- successful

- Satellite major events
 - None
- Payload major events
 - GPSP-A issue and switch to GPSP-B on September 8, 2014
- Ground major events
 - USG1 monitoring improvement
 - Barrow deployment OK and antenna ready for Jason-2 by end of October
 - Processing software upgrade early 2014 (TM-NRT v4.1 since 18 March '14)

Current OSTM/Jason-2 mission Status is OK

Platform Status

 The Jason-2 satellite bus is OK Command / control , RF : PMA : availability TBC PATCH for non-corrected single EDAC → uploaded in April 2014 On-Board Software, Mass Memory, Telemetry & Telecommand system 	ОК
– Thermal aspects:	OK
 Active thermal control works successfully and is sized with significant margins to case conditions 	meet further worst
– Electrical aspects :	OK
 Satellite power and consumption are within the power, consumption and energe 	etic budgets
– AOCS (attitude and orbit control system) :	OK
 All AOCS units work nominally, AOCS control laws work as expected 	
Exceptional activities :	
 Unused equipment destocking (gyro, STR) 	ОК
– STR monitoring	ОК
– SADM expertise	OK

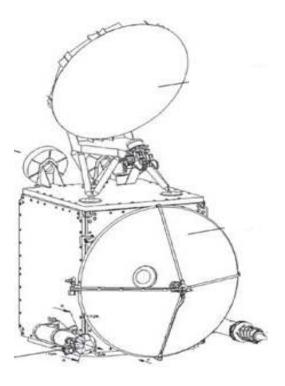

Jason-2 bus is fully operational after more than 6 years in orbit

– Gyro calibration (last done in July 2014)

OK

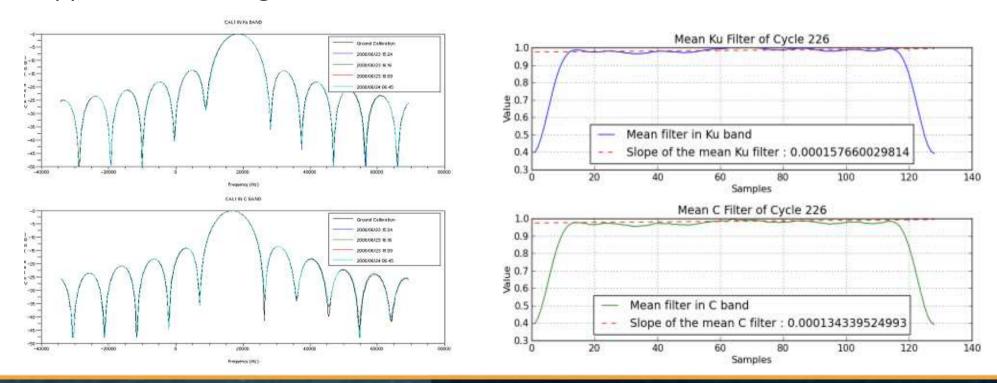
Navigation and guidance

- Station keeping maneuvers
 - ground tracks are maintained within ±1km from the reference grid at Equator
 - station keeping maneuvers are made with only one thrust above land on any orbit
- no collision avoidance maneuver
- propellant : ~24 kg (6 g/year)

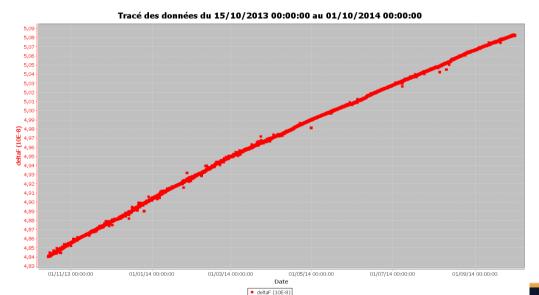


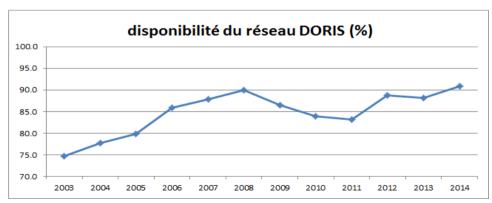
Payload Status since last OSTST (October, 2013)

- Core Payload
 - POSEIDON3OK
 - 2 cycles (209 & 220) in DIODE/DEM mode
 - DORISOK
 - AMR
 - GPSP-A
 NOK
 - Switched OFF on August 23^{rd,} GPSP-B switched ON and operational since 10/09 → limited impact on the products
- Passengers
 - T2L2 OK
 - CARMEN2 OK
 - LPT OK

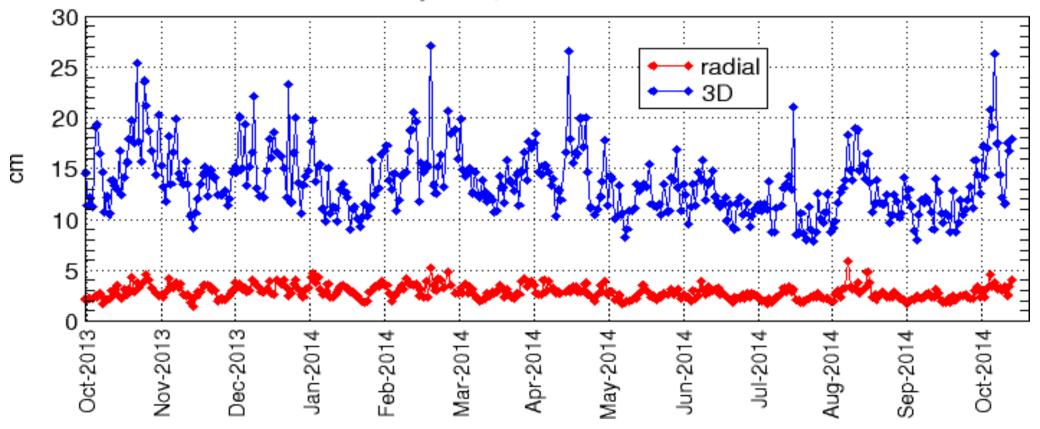


passengers perform satisfactorily

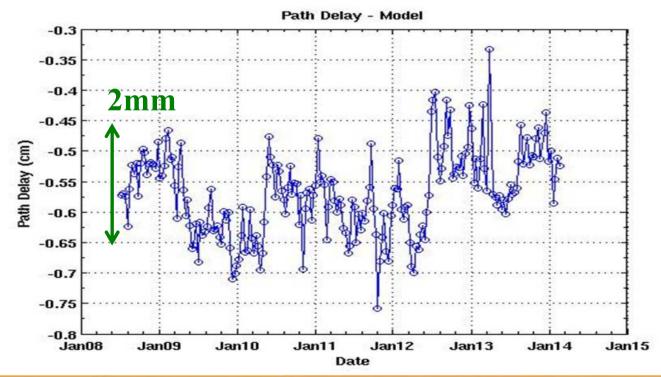

Poseidon-3


- Availability = 100% over the period
- Routine/Exceptional calibrations are OK
- CNG: Good Stability (of the order of calibration accuracy)
- Suppression of "long CAL2" calibrations

DORIS

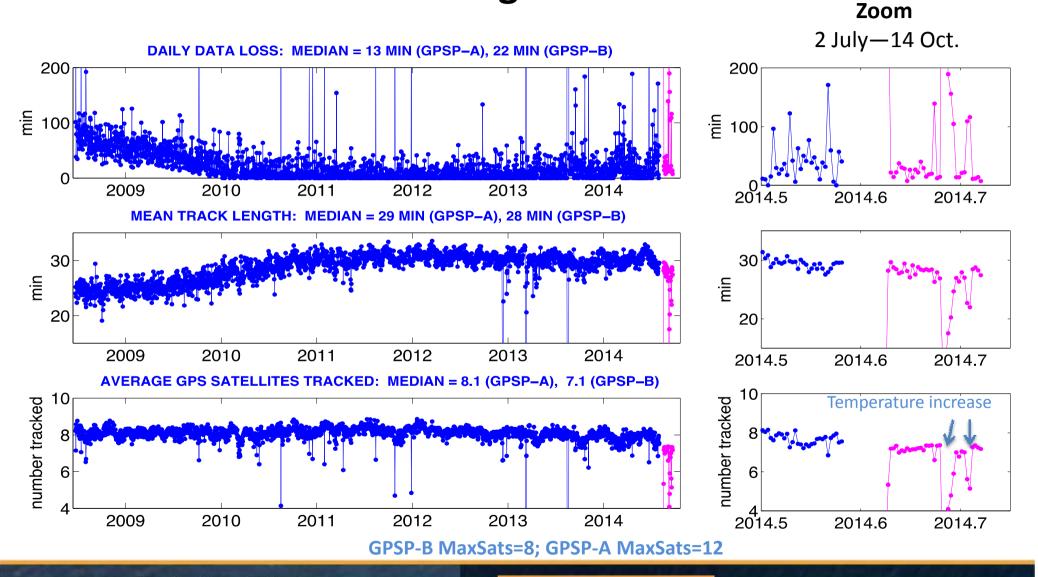

- DORIS Availability = 100% over the period
 - One minor anomaly in January
 - Effective accuracy as compared to on-board GPS (platform) is stable :
 - 1.8 μs (OGDR & IGDR)
 - ~1.5 μs (GDR)
- + very good performance of the ground network (~90 %)

DIODE-MOE differences for Jason-2


daily RMS, maneuvers excluded

→ Performance for real-time orbit accuracy over the period is ~2.8 cm (radial rms)

AMR


- AMR continues to provide excellent performance
- Availability = 100% over the period (total outages <70h since June 2008)
- No calibration changes implemented since February 28, 2012
- With ARCS processing the residual drift of GDR-D wet path delay (PD) is estimated to be < 1mm/year over mission life

GPSP-A & B

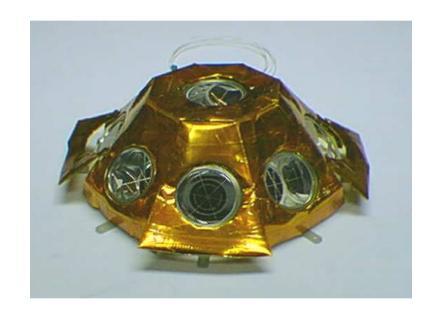
- On 23 August 2014, GPSP-A began resetting repeatedly every 31 seconds → switched OFF
- GPSP-B was powered on 26 August 2014 and did not return any POD data; few days after, it began functioning properly and outputting POD data on 10 Sept. 2014
- Degradation of the L2 frequency when the instrument temperature increases by 1°-2°C (in fixed yaw attitude; or when tracking > 8 sats)
 - Ambient payload temperature control is under investigation
- Fit residuals overlaps not as good
 - GPSP-B PC: 27.4 cm, LC: 5.5 mm > GPSP-A PC: 22.0, LC: 3.3
 - Antenna map needs to be updated
- Radial Overlaps not as good
 - GPSP-B 3.5 mm > GPSP-A 1.1 mm
 - Antenna map update; not as many satellites tracked (8 vs. 12)

GPSP - Tracking Performance

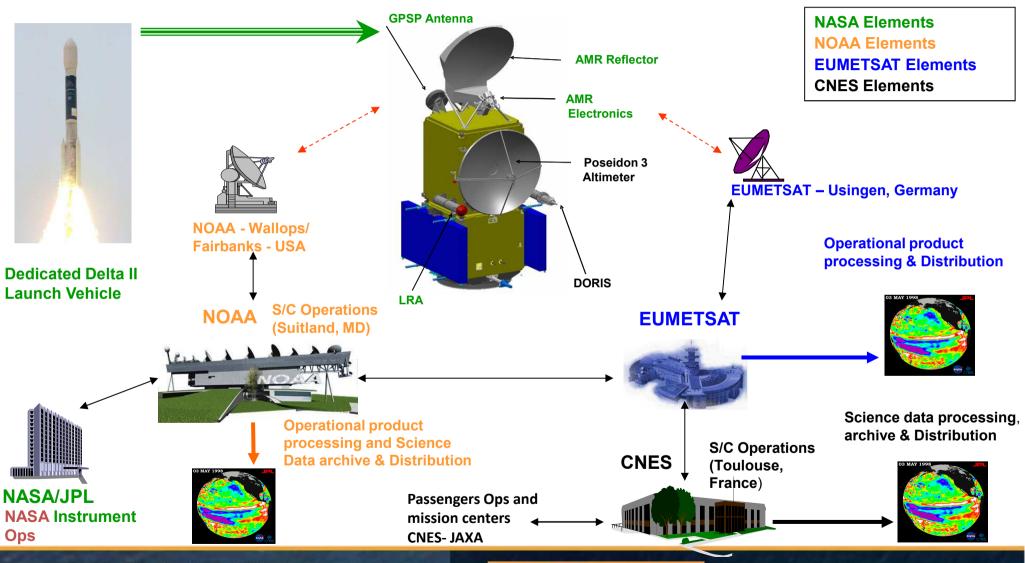
LRA Status

Summary:

- The LRA continues to provide returns adequate for tracking.
 - 100% availability since launch.
- SLR tracking of Jason-2 has been nominal.
- The top five stations for Jason-2 tracking are:


Yarragadee (Australia)

Changchun (*China*)


Wettzell (Germany)

San Juan (Argentina)

Mt. Stromlo (Australia)

System elements

Ground & Operations - Status and performances

• Earth terminals:

– Usingen (USG1) :

Wallops and Fairbanks (CDAS)

Control Centers :

J2CCC CNES Control center
 OK

all the elements are OK

SOCC NOAA Control centerOK

all the elements are OK

Instrument Commanding and Monitoring Centers :

SSALTO for CNES instruments

– JPL Mission facility for NASA/JPL instruments

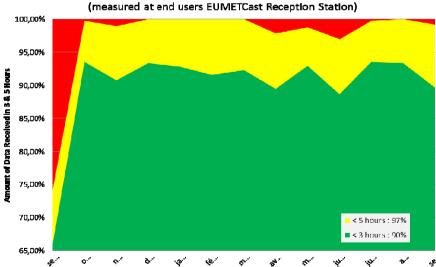
Passengers Mission centers
OK

OGDR products Status and performances

- NRT products made by EUMETSAT Mission Center NOAA/ESPC Mission Center
- Major changes in the period
 - New version of TM-NRT (v4.1) software operational since March 2014
- EUMPC: ~100% OGDR successful for PLTM1 acquired at USG
- NOAA ESPC: ~100% OGDR successful for PLTM1 acquired at CDAs
- 100 % OGDR products archived, all disseminated via EUMETCast and via NOAA dissemination services

Operational Geophysical Data Record data latency

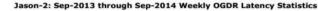
Requirements are:

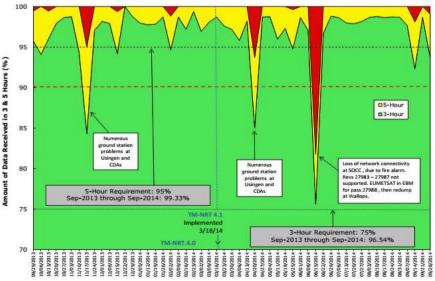

- 75% of OGDR data within 3 hours from sensing
- 95% of OGDR data within 5 hours from sensing

Performance (measured at EUMETCast end user level)

90 % in less than 3 hours 97 % in less than 5 hours

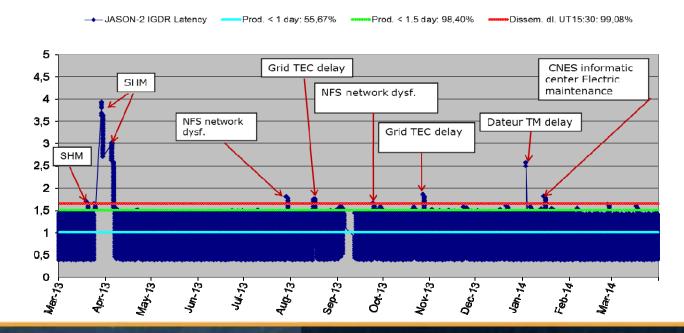
EUMETSAT's Inputs


Jason-2: Sep-2013 through Sep-2014 Monthly OGDR Latency Statistics



Performance (measured at NOAA ESPC production level)

96 % in less than 3 hours 99 % in less than 5 hours


NOAA's Inputs

IGDR - status and performances

- Jason-2 IGDR processing is OK (CNES: 100% IGDR successful)
- Latency: more than 98% of products available in less than 1.5 day
- 100% IGDR products archived
- all disseminated via CNES AVISO+ and NOAA dissemination services

GDR - status and performances

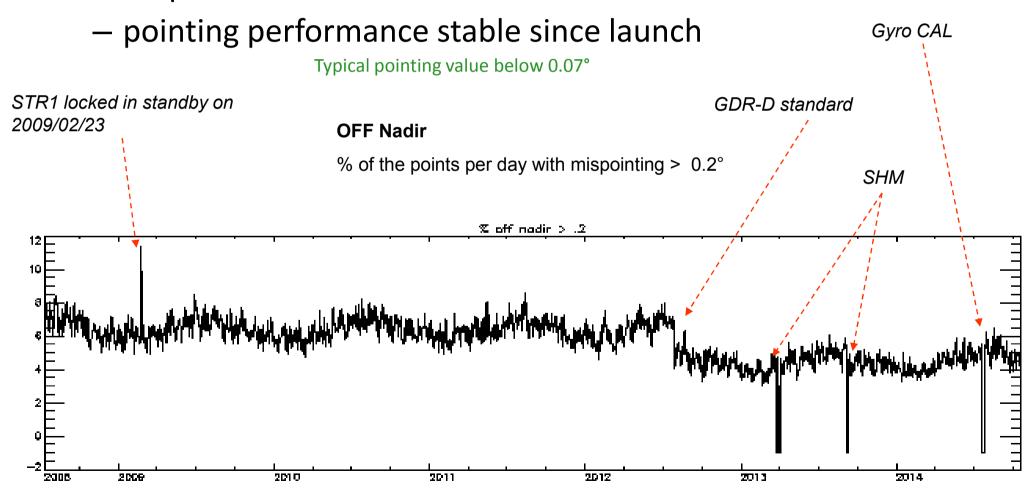
GDR produced by SSALTO Mission Center

Jason-2 GDR processing is OK (latency OK)

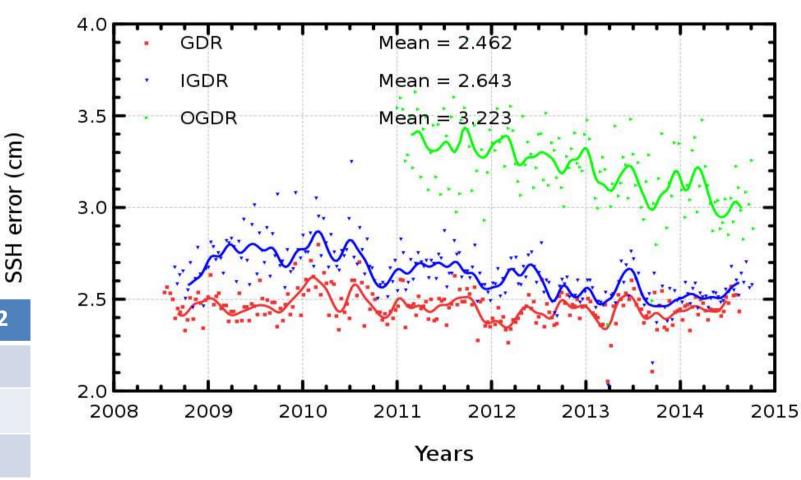
 Systematic cross checked validation by CNES and JPL

Cycle per cycle (and yearly) validation reports available on AVISO+
 http://www.aviso.altimetry.fr/en/data/calval/systematic-aplyal/btral/

100% GDR products archived


all disseminated via CNES AVISO+ and NOAA dissemination services

Jason 2 GDR validation latency from end SPA processing (since REVEX 2014)


System Requirements and Performances

- Altimeter Antenna Pointing :
 - Requirement: < 0.2°

Sea-level performances

SSH error deduced from crossovers analyses using radiometer data

Products	Jason-2
GDR	2.46 cm
IGDR	2.64 cm
OGDR	3.22 cm

Sea-level budget error (error < 10 days)

Available in the annual CALVAL report

1	Error budget	Specifications			Error (<10 days)			GOAL		
	error budget	OGDR	IGI	DR		GDR	OGDR	IGDR	GDR	GUAL
for	Altimeter range	>1.7 cm			>1.6 - 1.7 cm			1.5 cm		
lonosphere		1 cm	0.5 cm			>1 cm / >0.2 cm ⁱ			0.5 cm	
ind corrections surface height culation	Sea State Bias	3.5 cm	n 2 cm		3.5 cm 2 cr			> 0. 4 cm		1 cm
Sea State Bias Ory Troposphere Wet troposphere		1 cm	0.7 cm		0.4-0.7 cm	0.3-0.7 cm		0.7 cm		
eters * sea	Wet troposphere	1.2 cm			>0.2 cm		1 cm			
Parameters and corrections raw sea surface height calculation	Rms Orbit (radial component)	10	cm 2.5 cm 1.5 cm		>3.7 cm	>1.7 cm	>1.0 cm	1.5 cm		
Altimeter oarameters	Significant wave height	10% or 50 cm	10% or 50 cm			m 13 cm			5% or 25 cm	
ime	Wind speed	1.6 m/s	1.5 m/s		1 m/s		1.5 m/s			
Sigma0 (absolute)		0.7 dB			0.11 dB		0.5 dB			
Raw sea surface height		11 cm	3.9	cm	:	3.4 cm	> 4.2 cm/-	> 2.6 cm - 2.8 cm	>2.1 cm - 2.4 cm	2.5 cm
Final se	nal sea surface height x x x x < 2.5 cm < 2.7 cm		< 3.3 cm	х						

Sea-level budget error (at climate scales)

Available in the annual CALVAL report
With usage of In-situ comparisons (Tide Gauges, Argo profiles)

Spatial Scales	Temporal Scales	Altimetry errors
Global Mean Sea Level (10-day averaging)	Long-term evolution (> 10 years)	≤ 0.5 mm/yr
	Inter annual signals (2-5 years)	≤ 3 mm
	Periodic signals	Annual ≤ 1 mm
	(Annual, 60-days,)	60-day ≤ 3 mm
Regional Mean Sea Level (2x2 deg boxes and 10- day averaging)	Long-term evolution (trend)	≤2 mm/yr
	Inter annual signals (> 1 year)	Not evaluated
	Periodic signals	Annual ≤5 mm
	(Annual, 60-days,)	60-day ≤1cm

System Requirements and Performances

- Data availability :
 - Requirement: The GDR shall contain 95% of <u>all possible</u> over-ocean data (acquisition and archive) during any 12 month period, with no systematic gaps.
- from October 2013 until October 2014

⇒ satellite unavailability ~0 % < 4% req

– bus : 0% altimeter : 0.01% Doris : 0% AMR : 0.01%

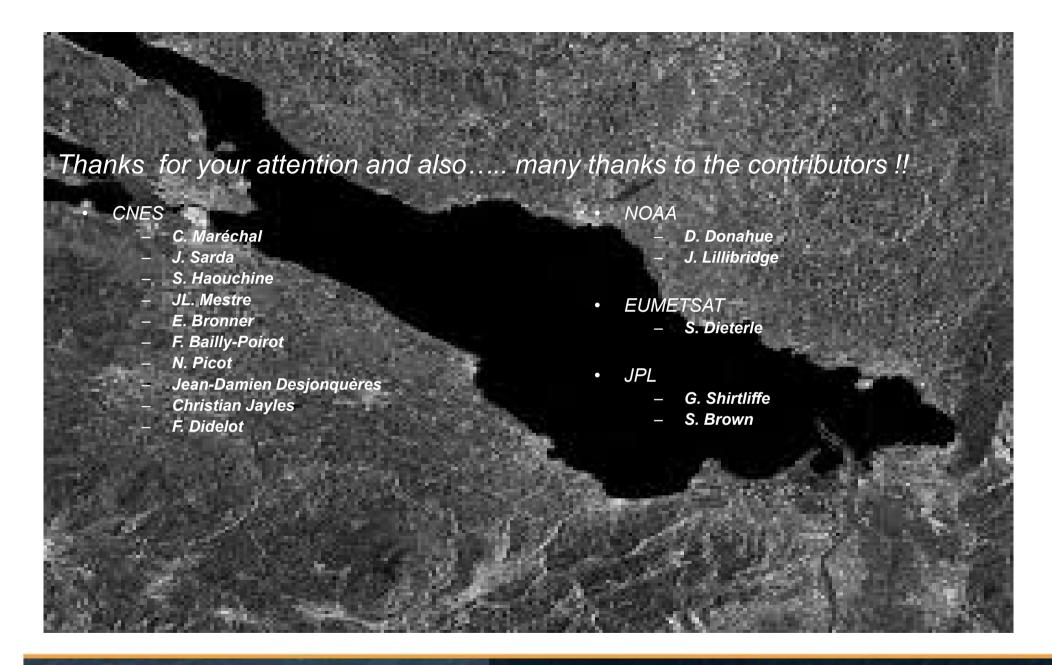
⇒ ground unavailability ~0 % < 1% req

→ Global Jason-2 system availability: 99.9 %

NB: GDR data availability vs theory (from 2013 annual CALVAL report)

All surfaces: 95.3 %

Over Ocean: 99.0 %


Conclusion

- Jason-2 satellite has still an excellent behavior
- All satellite and system performances requirements are fulfilled with large margins
- Extended Operational Routine Phase is nominal
- → CNES and EUMETSAT are OK for a mission running up to December 2017 (at least !!
- → NASA/JPL and NOAA are OK up to June 2015; they will run a mission extension process in 2015
- → Using Jason-1 experience, and after interleaved phase with Jason-3, one item to prepare: "where to put Jason-2 when it will become breakable??"

thanks to all the teams (CNES, NOAA, EUMETSAT, NASA/JPL) a system running fine, with an excellent availability level

Jason-1 GDR-D reprocessing

- Activity decided during Boulder OSTST (2013)
- Not a complete reprocessing; just updating main parameters
- Conducted jointly by CNES and JPL
 - CNFS
 - provide orbits
 - provide geophysical parameters
 - provide tools for creation new GDRs in NetCDF format
 - perform CALVAL on complete data set
 - JPL
 - provide reprocessed JMR series
 - perform the « reprocessing »
 - perform CALVAL on complete data set
- Schedule
 - almost all activities completed
 - release of new Jason-1 products planned early 2015

