Application and Evaluation of ACDC Delay-Doppler processing over CryoSat-2 for Open-Ocean zones

Eduard Makhoul¹, Chris Ray³, Mònica Roca¹, Albert Garcia-Mondéjar², Roger Escolà²

¹ isardSAT, Barcelona, Catalonia; E-mail: <u>eduard.makhoul@isardsat.cat</u>;
² isardSAT, Guilford, United Kingdom;
³ isardSAT collaborator at Saint Mary's College, San Francisco, United States

This work is devoted to show the integration and operation of the ACDC (amplitude compensation and dilation compensation) technique in an isardSAT inhouse developed Delay-Doppler processor (DDP). Preliminary results on the ACDC performance on real FBR CryoSat-2 data over open ocean zones are presented. ACDC algorithm was originally proposed by Chris Ray and isardSAT team within the Sentinel-6 project and applied at burst level [1]. In this work such processing algorithm is integrated at stack level once the geometry corrections have been applied. The combination of the ACDC processing within L1B and the implementation of the simpler ACDC retracker provides improved (less noisier) geophysical retrievals.

ACDC modeling

Two-step compensation:

- Along- and across-track amplitude compensation to equalize the Doppler and range-dependent weighting
- 2. Across-track dilation compensation to correct for the waveform widening when moving away from the central beam

Mean backscattered power in a range-bin k & Doppler beam l [2]

DDP structure change with stacking before geometry corrections allows an **easy** integration of ACDC processing \rightarrow conventional + ACDC stack (L1B-S) are provided as optional products.

L1B product includes geophysical retrievals since a simple (lower computational load) retracker is integrated in the ACDC processing.

ACDC implementation

Ideally there is no variation of the ACDC stack in the along-track direction \rightarrow move from 2-D map to a 1-D representation ($\uparrow\uparrow$ samples for fitting)

3) ACDC Multilooking with a Gaussian weighting $\omega(x)$ (averaging samples with similar DC range- win. size of δ)

$$\Psi_{n}^{ML-ACDC} = \frac{\sum_{k,l} \omega(\kappa_{k,l} - n\delta) P_{k,l}^{ACDC}}{\sum_{k,l} \omega(\kappa_{k,l} - n\delta)}$$

Initial estimates (first surface) of SWH & epoch performed with in-house implementation of the fully analytical SAR ocean model (Chris Ray et al 2015, see [2]) \rightarrow synergy with L1B processing

Parameter estimates of the previously processed waveforms are used to make initial estimate for the ACDC processing of next waveforms

AOI & Methodology

(*) Tracks used in the ACDC evaluation over the central pacific mask of CryoSat-2

o 37 tracks over Central Pacific-year 2013

- DDP processing baseline:
 - Zero-padding + Hamming in alongtrack (across-track weighting can be considered) + samples to zero avoided in ML + edge beams masking $(-0.6 \le \theta_{look} \le 0.6)$
- Conventional retracker [2] vs ACDC
 - Root mean square error (RMSE) w.r.t
 smoothed version (sliding window of 20 samples) over track [SSH & SWH]

5.5 Comparison SWH: isardSAT

RMSE error on fitted SWH: isardSAT (ISR)

0.7

Conclusions
 Implementation and integration of ACDC processing at stack level → L1B with geophysical retrievals
 Preliminary validation of ACDC integrated at stack level with CryoSat-2 data vs fully analytical SAR ocean retracker

- Improved SSH (a factor of 1.5-2 in terms of RMSE)
- Improved SWH (a factor of 3-4 in terms of RMSE)
- Further analysis of biases on SWH required to tune the impact of PTR modeling (ground-truth data) and possible impact of wrong estimates of roll & pitch (could be improved through ACDC as in [3])

References

[1] C. Ray *et al.*, "Amplitude and Dilation Compensation of the SAR Altimeter Backscattered Power," in *IEEE Geoscience and Remote Sensing Letters*, vol. 12, no. 12, pp. 2473-2476, Dec. 2015.

[2] C. Ray *et al.*, "SAR Altimeter Backscattered Waveform Model," in *IEEE Transactions on Geoscience and Remote Sensing*, vol. 53, no. 2, pp. 911-919, Feb. 2015.

[3] C. Ray *et al,* "A New Method to Determine the Antenna Pointing directly from Altimeter SAR mode Data", in *Ocean Surface Topography Science Team Meeting,* Reston (USA), 20-23 Oct. 2015.