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Goals:

Estimate wind stress components of the altimeter-derived wind speed

Estimate latent (evaporation) and sensible heat flux along the altimeter
tracks in coastal areas combining satellite SST and specific air
humidity and altimetric wind speed using the bulk formula

Perform process-oriented studies based on the experimentation with
regional oceanic and atmospheric models to better understand the role
of air-sea interactions in shaping the low-level atmospheric circulation
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Study area:
« Humboldt Eastern Boundary Upwelling System (Chile — Peru)
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4 Altimeter calibrated (Jason-2) (Swath), p limits [12 52km 60 min], coast distance [50-300]km, data number:13566
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Wind speed and drop-off (Astudillo et al., 2017):
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Ekman pumping and transport (Astudillo et al., 2017):
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Sensitivity of the oceanic circulation to coastal wind profiles
In a high-resolution model

 Model: CROCO at 3km resolution (1/36°)
« Domain : central Chile

 Experiments: forced simulations (15-years, permanent year 2005) with and
without including a coastal wind profiles in the atmospheric forcing

 Method: heat budget analysis

« Objective: Does the consideration of a wind-drop off in the atmospheric
forcing reduces the cool biais?

 Answer: Yes but not for the reason we thought
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Heat budget analysis in a 50-km coastal fringe:

Simulation without drop-off
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Results (Astudillo et al., 2019):

*The presence of a wind drop-off reduces Ekman transport with is partially
compensated by an increase an Ekman pumping. On the other hand, it yields a
reduction in vertical mixing (shallower mixed-layer) which increase the warming
tendency associated to heat fluxes (Solar radiation is more efficient in warming
SST).

* In addition, the coastal wind profiles impact the baroclinic instability of the
coastal currents, which modulates the off-shore eddy flux: Costal winds are
thus influential on the regional oceanic circulation.

» Coastal wind profiles are not realistic in atmospheric Reanalyses (even the
state-of-the art), which explains why oceanic Reanalyses have a persistent bias
In mean EKE along the coast of Peru/Chile.
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Modulation of mean EKE at ENSO timescales:
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Perspective:

« Document long-term trends in coastal wind profiles and compare with long-
term trend in costal sea level/SST. Can observed discrepancies between sea
level trends in the coastal zone and the open-ocean can be explained by trends
in the wind stress curl along the coast?

« Enhance the network of meteorological stations in collaboration with partners
(Peru/Chile): i.e. maintain stations in location of satellite track for Cal/Vval
purpose (on-going with CEAZA (Chile))

« Test correction of coastal winds in atmospheric Reanalysis for improving
oceanic reanalysis products (collaboration with Mercator-ocean)

* Link with on-going project UPWESWIND: Use of HR Sentinel-1A SAR images to
complement Scatterometer/Radiometer products in the coastal zone. HR
merged products (0.125° 1h) on the 2000-2019 period => Indirect «validation»
with ocean modeling (SWANS for Humboldt and California EBUS)




