Gavdos/West Crete Cal-Val site: Over a decade calibrations for altimetry

Mertikas S. P., C. Donlon (ESA), C. Mavrocordatos (ESA), I. N. Tziavos (AUTH, Greece), J-D. Desjonqueres (CNES, France), D. Galanakis (Space Geomatica Ltd., Greece), G. Vergos (AUTH, Greece), O. Andersen (DTU, Denmark), A. Tripolitsiotis (Space Geomatica Ltd., Greece), N. Picot (CNES, France), X. Fratzis (TUC, Greece), Hailong Peng (NSOAS, China),
Gavdos Permanent Cal/Val Facility
Tracks around Gavdos & Crete
Land and Sea Calibrating regions
Jason-2 Ascending Pass No. 109

- Ascending Pass No. 109, GDR-D, Cycles: 2-298;
- Calibration region 14.5km-24 km;
- Bias = +7 mm ± 3 mm, using local gravimetric geoid model;
Jason-2 Descending Pass No. 18

- Descending Pass No. 18, GDR-D, Cycles: 2-298;
- GOCE dynamic topography; Cal region 9km-20 km;
- Bias = $-23 \text{ mm} \pm 4 \text{ mm}$
Jason-3 Ascending Pass No. 109

- Ascending Pass No. 109, IGDR-D, Cycles: 1-24;
- Calibration region **14.5km-24 km**;
- **Bias= -32 mm ± 12 mm**, using local gravimetric geoid model;
Jason-3 Ascending Pass No. 18

- Descending Pass No.18, IGDR-D
- Bias = -30 mm ± 7 mm, using local gravimetric geoid model;
SARAL/AltiKa ground tracks
SARAL/AltiKa Pass No. 571 (Ascending)

- Ascending Pass No.571, GDR-T
- **Bias** = -47 mm ± 6 mm, using local gravimetric geoid model;
Chinese HY-2 calibration using CRS1

- 1-Hz Data, Time-tagging problems, Missing values in orbit.
- HY-2 Bias = +2.879 m (Preliminary in 2012, Pass No.280)
HY-2 problems with GDR
HY-2 Cal/Val sites

Qianli-Yan, QuingDao, China

Crete: CRS1 is the Cal/Val site for HY-2, Only 10 km from PCA,
HY-2 ground tracks over Crete
HY-2 altimeter bias with CRS1

Descending Pass No. 280, Cycles 54-62 using S-GDR data at 20 Hz,
Calibrating regions: 9-16 km (south), 10-18 km (north),
Median bias= $-27.8 \text{ cm} \pm 2.7 \text{ cm}$, Mean = $-27.6 \text{ cm} \pm 2.7 \text{ cm}$
B= -28.5 cm against Jason-2, Cycles 198, 204, 205, 207 (No. 018),
B= -23 cm against SARAL/AltiKa, 8 and 10 (No. 571)
All cycles of HY-2 are being calibrated with recent GDR Data.
GVD3: Transponder Calibrations in Gavdos

2003
CDN1: ESA Sentinel-3 Altimeter Calibration
CDN1 Transponder Calibrations

Sentinel-3, 9-Apr-2016

Cryosat-2, 25-Apr-2016

Jason-2, 2-Oct-2015

Jason-2, 7-May-2016

Jason-3, 17-Apr-2016

La Rochelle - France – Nov. 2016

OSTST meeting
Jason-2 Transponder Calibrations

- Descending Pass No. 18, in 2015 and in 2016 (in Tandem with Jason-3),
- Precise Orbit [POE], Sensor-GDR-D,
- Range Bias $B = 15\text{ mm} \pm 7\text{ mm}$,
- Variations may be due to yaw steering applied in Jason-2 & Jason-3.
Jason-3 transponder Cal/Val

- Transponder Cal/Val in tandem with Jason-2 (2016),
- Sensor-I-GDR-D, Cycles 5-24, MOE Orbit,
- Jason-3 Range Bias = +38 mm ±8 mm [J3-J2=23mm].
Sentinel-3A Sea-Surface Calibrations
Sentinel-3 altimeter calibrations

Same orbit as the transponder orbit at CDN1,
Data Gaps exist in Sentinel-3 GDR on **Pass No. 14** next to Gavdos
Sentinel-3A, Pass No. 335 (Descending),
Passing over Gavdos and at cross-over of Jason No.18 & No.109,
Mean Range Bias = \(+35 \text{ mm} \pm 10 \text{ mm} \).
Summary of Cal/Val

• Sea-Surface Calibrations

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Ascending</th>
<th>Descending</th>
<th>Average</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jason-1</td>
<td>+28 mm</td>
<td>+50 mm</td>
<td>+39 mm</td>
<td>70-100</td>
</tr>
<tr>
<td>Jason-2</td>
<td>+7 mm</td>
<td>-23 mm</td>
<td>-8.0 mm</td>
<td>2-298</td>
</tr>
<tr>
<td>Jason-3</td>
<td>-30 mm</td>
<td>-32 mm</td>
<td>-31.0 mm</td>
<td>1-24</td>
</tr>
<tr>
<td>SARAL/AltiKa</td>
<td>-47 mm</td>
<td></td>
<td>-47 mm</td>
<td>1-34</td>
</tr>
<tr>
<td>HY-2</td>
<td></td>
<td>+278 mm</td>
<td>+287 mm</td>
<td>54-62</td>
</tr>
<tr>
<td>Sentinel-3</td>
<td>+4 mm</td>
<td>+35 mm</td>
<td>+20 mm</td>
<td></td>
</tr>
</tbody>
</table>

• Transponder Calibrations

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Ascending</th>
<th>Descending</th>
<th>Average</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>JA-2 (Gavdos)</td>
<td>-13.6 mm</td>
<td>+15.6 mm</td>
<td>+1.1 mm</td>
<td>2011-2012</td>
</tr>
<tr>
<td>JA-2 (CDN1, Crete)</td>
<td>+15.0 mm</td>
<td></td>
<td></td>
<td>2015-2016</td>
</tr>
<tr>
<td>JA-3(CDN1, Crete)</td>
<td>+38.0 mm</td>
<td></td>
<td>J3-J2=23mm</td>
<td>2016</td>
</tr>
</tbody>
</table>
Fiducial Reference Measurements 4ALT

• Gavdos/Crete: Permanent Altimeter Calibration Facility (PACF): Long-term (15yrs) & consistent calibration of altimeters: (1) Bias & drifts; (2) Biases among missions; (3) Connect different missions.

• To attain Fiducial Reference Standard:
 – documented SI (Système international d'unités) traceability,
 – independence from the satellite geophysical retrieval process,
 – uncertainty budget for all FRM instruments and measurements,
 – defined FRM measurement protocols.
 – Specification of uncertainty budgets for:
 • Instrument measurements; Cal/Val Methodology employed; Algorithms, Models (geoid, MSS, dynamic topography, transponder, etc.).

• Changes are made at PACF to attain FRM4ALT;
Future

• FRM4ALT workshop in May 2017 in Crete;
• All Chinese HY-2 Cal/Val cycles are recalibrated at CRS1 Cal/Val site;
• Variations in transponder Cal/Val may be due to yaw steering applied to Jason-2, Jason-3;
• On 11-Nov-2016 both Sentinel-3 and Jason-3 fly over CDN1 **by 20 sec apart**;
• Common ground and settings for calibrations.
Acknowledgements

Support provided by:

• ESA/ESTEC
• EU
• CNES