Comparisons of Jason-3 and Sentinel-3A and tide gauges

Eric Leuliette¹, Amanda Plagge^{1,2}, ¹ NOAA Laboratory for Satellite Altimetry, NCWCP, College Park, MD ² GST

Laboratory for Satellite Altimetry NOAA·NESDIS·STAR

Ocean Surface Topography Science Team Meeting • 23-27 October 2017

- 1) Altimeter/tide gauge comparison method
- 2) Review of our vertical land motion sensitivity study
- 3) Modifications for Sentinel-3A comparisons
- 4) Sentinel-3A and Jason-3 results
- 5) Implications for verifying Jason-CS/Sentinel-6 global mean sea level stability

NOAA Altimeter/tide gauge comparison system

Altimetry data from RADS

"Colinear" merged datasets

NOAA

- TOPEX/Jason-1/Jason-2/Jason-3
- Merged ERS-2/Envisat/Altika
- Sentinel-3A NTC/STC

Daily tide gauge (TG) data from UHSLC (75 gauges)

- 61 of 64 gauges used by Mitchum 2000 (blue)
- 14 additional gauges chosen from those used in Watson et al 2015 after controlling for data availability (red)

Covariance method of combing along-track altimetry – gauge residuals

VLM sensitivity study: TOPEX/Jason1-2

Estimate drift in the TOPEX/Jason-1/Jason-2 using each vertical land motion (VLM) method (GPS estimates + GIA model)

The range of drifts in TOPEX/Jason-gauge results from VLM strategies is roughly consistent with a ± 0.4 mm/year uncertainty.

Drift estimates in in altimeter–TG residuals for TOPEX/Jason-1/Jason-2 (mm/year)

	GPS lowest error	Closest GPS	Watson weighting by dist/err
AWZ+ULR5	0.25	0.28	0.22
AWZ+ULR6	0.16	0.21	0.19
AWZ+UTas	0.45	0.90	0.41
AWZ+JPL	0.27	0.34	0.06
AWZ+NGL	-0.27	-0.38	-0.03

Statistics of altimetry – tide gauge residuals

Assumption: if we are able to completely remove the VLM from the gauge data, then the trends in the *individual* altimeter-TG residuals will have a Gaussian distribution

• If they aren't Gaussian, then either we still have VLM or there are other systematic errors (like geophysically-correlated errors in the altimetry)

Method:

NOAA

- To avoid outliers find mode and scale parameter (sigma) from the least absolute deviation of the distribution of residuals
- Find the scale of the equivalent normal distribution
- The smaller the scale, the better the VLM?
- Examine the residuals from both the TOPEX/Jason minus TG and Enivsat/AltiKa minus TG

Using <u>only GIA model estimates</u> of VLM produce TOPEX/Jason–TG the distribution of the residuals have scales of 0.84 and 0.82 mm/year Similar results for AWZ and Peltier.

Equivalent MAD scales found for each of the 30 GNSS+GIA VLM models/selections

	GPS lowest error	Closest GPS	Watson weighting
AWZ+ULR5	0.90	0.84	0.84
AWZ+ULR6	0.93	1.00	0.93
AWZ+UTas	1.12	1.25	1.12
AWZ+JPL	0.97	0.90	0.87
AWZ+NGL	1.10	1.07	0.75

The Watson weighting criteria of sigma < 1 mm/year reduces the number of NGL VLMs used from 63 to 46, similar to the other VLM selections.

Modifications to the methodology for Sentinel-3A

- Time step: half cycle (13.5 days)
- Tidal alias removal
 - Gauge data are daily averages and GOT4.10 removed from S3A
 - Remove variability at tidal aliases from altimeter-gauge residuals, if time series > 2x alias period and periods are separable
 - Because several S3A aliases are much longer than TOPEX/Jason, these aliases aren't yet removed

Tidal component	S3A alias period (days)
Sa/K1/P1	365.2
Ssa	182.6
M2/Msf	2171.0
01	157.5
N2	277.0
Q1	2268.0
Mf	141.0
Mm	1147.0

Tide gauge results (Sentinel-3A)

Tide gauge results

NOAA

Tide gauge results

NOAA

St dev of S3A-gauge residuals (mm)

The lowest variances of S3A-gauge residuals are (blue and green) are at tropical island gauges (blue and green) and highest at coasts (red).

The residuals in 14 months of Sentinel-3A/tide gauge differences (N=32) have an r.m.s. of 3.1 mm.

Half-cycle time steps (13.5 days)

The number of gauges available usually increases over time as UHSLC research-quality data replaces fast-delivery.

Mean annual bias error = -

^(13.5 days)

Ŭ	restauats
	$\sqrt{N_{eff}}$

 $\sigma_{\rm maxiduala}$

Altimeter	St. dev. of residuals (mm)	Autocorr (95% Cl)		
TOPEX-A	4.65	0.38 (0.13)		
TOPEX-B	4.65	0.29 (0.19)		
Jason-1	3.92	0.23 (0.13)		
Jason-2	3.67	0.29 (0.12)		
Jason-3	3.42	0.08 (0.27)		
S3A*	3.13	0.24 (0.34)		

The standard deviations and the autocorrelations of the residuals imply that the tide gauge network can monitor annual changes in the bias to ± 0.8 mm for Jason-2 and ± 0.5 mm for Jason-3 (standard error).

However, this assumes that there are no systematic errors, like gauge availability.

- Tide gauge comparisons with Jason-3 and Sentinel-3A suggest that annual bias changes in JCS/S6 global mean sea level can be monitored < 1 mm.
- The impact of systematic errors, like gauge availability and vertical land motion need further study.
- The drift in 15-months of Sentinel-3A (0.9 mm/year) isn't significant (95%), but the Jason-3 drift, 2.3 ± 1.1 mm/year (95%) may be.

Backup slides

