A TRADE-OFF ANALYSIS OF FULLY FOCUSED SAR PROCESSING **ALGORITHMS FOR HIGH PRF ALTIMETERS** aresys

Michele Scagliola, Aresys srl, Milan, Italy

Pietro Guccione, Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy

Abstract

The full focused processing in the frequency domain for high Pulse Repetition Frequency (PRF) radar altimeter science data is proposed. Considering a radar altimeter as a Synthetic Aperture Radar (SAR) instrument operating in near nadir-looking geometry, two SAR frequency-domain focusing algorithms, namely Range-Doppler and Omega-Key, are analyzed. Then a properly modified processor for radar altimeters is described and implemented. Simulation set-up using parameters from CryoSat and a preliminary result from in-orbit CryoSat data confirm the effectiveness of the full focused processing in the frequency domain. The proposed approaches, compared to the one formerly proposed in literature (that uses Back Projection), is less complex and more computationally efficient

Problem formulation

The high PRF (Pulse Repetition Frequency) altimeter instrument transmits pulses at high pulse repetition frequency guaranteeing coherence.

Coherent summation extended to the whole synthetic aperture is the new concept (Full Focusing), under the assumption that pulse coherence is maintained along the entire synthetic aperture.

Advantages:

- >Along-track resolution up to its theoretical limit (half the along-track antenna) length).
- \blacktriangleright Improvement of the ENL with respect to D/D

Drawback:

 \blacktriangleright Processing based on Back Projection is not computationally efficient

Due to similarity of the problem with Synthetic Aperture Radar in nadir acquisition, we face the processing problem using the focusing algorithms already exploited in side-looking imaging SAR systems.

Purpose: computational efficiency maintaining at the same time accuracy in results.

Algorithm comparison It is based on Range-Doppler Omega-k (WK) algorithm is based on the idea that the WK RGD2D The Back Projection proposes to compensate BP algorithm: azimuth focusing is exact transfer function can be written in a closed-form every term of the unfocused IRF. It is applied performed in the transformed expression using the Stationary Phase principle for each output sample on ground surface. domain RG comp raw data

Simulation Results

Simulation results obtained using CryoSat parameters.

The WK algorithm is the best trade-off between IRF quality and computational effort.

Comparison of the IRF quality parameters							
Target (rg,az) [m, m]	Method	Along-track resolution	Across-track resolution	PSLR 2nd [dB] along/across	Misalingment along-track	Misalignment across-track	
0, any	Theoret.	0.421m	0.415m	-13.26			
40, any	Theoret.	0.554m	0.415m				
0,0	WК	0.419m	0.410m	-14.05 -13.19	<10 ⁻³ m	<10 ⁻³ m	
40,0	WК	0.559m	0.410m	-13.26 -13.12	<10 ⁻³ m	<10 ⁻³ m	
0,1500	WК	0.419m	0.410m	-14.04 -13.19	<10 ⁻³ m	<10 ⁻³ m	
0.0	RD	0.407m	0.410m	-13.27	<10 ⁻³ m	<10 ⁻³ m	

CryoSat acquisition

A demonstration of the WK algorithm is given by processing an in-orbit CryoSat acquisition in SAR mode over the Svalbard transponder, starting from a CryoSat FBR product.

The processed bandwidth was limited to 20% of the total Doppler bandwidth.

References

Scagliola, Guccione, Giudici, "FULLY FOCUSED SAR PROCESSING FOR RADAR ALTIMETER: A FREQUENCY DOMAIN APPROACH", in proceedings of IGARSS 2018

Guccione, Scagliola, Giudici, "2D Frequency Domain Full Focused SAR processing for High PRF Radar Altimeters", submitted to MDPI Remote Sensing

-13.17 -13.27 <10⁻³m 0.536m <10⁻³m 0.410m 40,0 -13.18 -13.27 0.407m <10⁻³m 0,1500 0.410m <10⁻³m -13.17 -13.21 0.419m <10⁻³m <10⁻³m RGD2D 0.410m 0,0 -16.94 -12.84 40,0 <10⁻³m <10⁻³m RGD2D 0.512m 0.410m -16.57 -11.37 0,1500 0.419m 0.410m 0.023m <10⁻³m RGD2D -16.79

In Table below it can be noticed the reduction computational effort given by focusing in algorithms operating in frequency domain.

Evaluation of the computational effort							
Method	Cost per sample [cplx mult]	Processing time [s]	Approximate value using Cryosat-2 parameters				
BP	134564	8978	123200				
WK	114	16.8	135				
RGD2D	200	15.1	189				