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Abstract

This contribution highlights progresses made in the Merging Ocean Models and Observations at the 
Meso and Sub-mesoscales (MOMOMS) OSTST project. The project mainly focused on (i) 
Observability of mesoscale dynamics by altimetry, (ii) new, multi-scale algorithms for data inversion 
and assimilation, and (iii) multi-sensor based ocean reconstruction. Two new algorithms are 
presented to address the assimilation of non-local observations, i.e. observations possibly affected 
by geographically distant quantities, and the assimilation of observation sets containing non-local, 
large-scale signature. Both problems are rendered difficult in Ensemble data assimilation by the 
necessary use of analysis localization techniques. Applications with altimetry are presented. The 
presentation also introduces an algorithm combining the assimilation of altimetry, which adjusts the 
mesoscale dynamics, with the assimilation of SST images to adjust the finer scales. Finally, the 
benefit of assimilating (future) surface current observation in addition to altimetry is shortly illustrated.



3 axes of research

• Observability of mesoscale dynamics by 
altimetry 


• New, multi-scale algorithms for data 
inversion and assimilation


• Multi-sensor based ocean reconstruction


Results from the last two items are shown in 
the following slides.



A multiscale ocean data assimilation approach combining spatial and 
spectral localisation 
Background: 
Data assimilation aims at correcting model variables using observations. In ensemble data 
assimilation, each single observation can affect distant variables based on ensemble correlations. 
Spurious correlations due to subsampling (small ensemble size) induce spurious corrections. This 
forces to localize the analysis, i.e. limit the impact of each observation to a short geographical radius. 
This process, called spatial localization, rules out the possible large scale signature of observations.

Figure: Correlations with SSH at gridpoint indicated by 
a cross, from a 69-members ensemble of NEMO 1/4° 
simulations of the Arctic Ocean. Small scales have 
been removed us ing a spher ica l harmonic 
decomposition and truncation of higher modes. Left 
and right figures result from 2 different truncations. 
Both display long-distance (and likely inadequate) 
correlations.

Tissier et al, www.ocean-sci.net/15/443/2019/ 



A multiscale ocean data assimilation approach combining spatial and 
spectral localisation 

Strategy: 
It is proposed to decompose the ensemble members on spherical 
harmonics, and perform the Ensemble Kalman Filter analysis with the 
spectral coefficients, with localization applied in the spectral space. An 
inverse transformation provides the analysis ensemble in the physical 
space. 
Spatial and spectral localizations are combined to draw the maximum 
benefit from both (for small-scale processes and large-scale 
processes, respectively).

Figure: Ensemble correlations with the point indicated by the cross, in the 
spectral space. Abscissa and ordinate indicates the l and m degrees 
(standard notation for spherical harmonics) respectively. Distant 
correlations exist, but can be mitigated using localization in this spectral 
space. 

Tissier et al, www.ocean-sci.net/15/443/2019/ 



A multiscale ocean data assimilation approach combining spatial and 
spectral localisation 

Figure: 
Top, from left to right: Ensemble mean of 
SLA, s imulated nadir observat ions, 
ensemble mean anomaly (difference with 
true SLA field, simulated with NEMO; target 
of the analysis). 
Bottom, from left to right: Correction from 
the Ensemble Kalman Filter analysis with 
only spatial localization, only spectral 
localization, and the combination of both. 
Only the large scales (> 200 km) are shown 
here. 

Tissier et al, www.ocean-sci.net/15/443/2019/ 



Implicitly Localized MCMC Sampler to Cope With Non-local Data 
Constraints in Large-Size Inverse Problems

Brankart 2020, https://www.frontiersin.org/articles/10.3389/fams.2019.00058

Background: 
In high-dimensional inversion problems, sample-based Bayesian inversion methods are limited by 
the sample size. Ensemble assimilation of geophysical data is generally implemented with covariance 
localization techniques, which limit the geographical extent of the impact of each individual 
observation in the analysis. This is actually acceptable with local observations, but not with non-local 
observations. This work investigates a localized Monte Carlo Markov Chain (MCMC) sampling 
method that unifies the notions of covariance localization and non-local observations. 

This work is exposed in more details in a thematic splinter.



Implicitly Localized MCMC Sampler to Cope With Non-local Data 
Constraints in Large-Size Inverse Problems

Brankart 2020, https://www.frontiersin.org/articles/10.3389/fams.2019.00058

Figure: Left: A synthetic 2D field on the sphere, with finite probability (25%) to be 0. This field is 
considered as the unknown truth to be retrieved through observations located on the Right. 
Another observation considered is the location of the maximum, indicated with the black circle. 



Implicitly Localized MCMC Sampler to Cope With Non-local Data 
Constraints in Large-Size Inverse Problems

Brankart 2020, https://www.frontiersin.org/articles/10.3389/fams.2019.00058

Localization is implemented with Schur products of each ensemble member with other, resolution-
degraded ensemble members. The correlations in the resulting ensemble are equivalent to Schur-
multiply the initial correlation matrices.

Fig 1: Correlations with 
location indicated with 
the cross, from the 
original ensemble, C

Fig 2: Correlations 
from the ensemble of 
resolution-degraded 
m e m b e r s o f t h e 
original ensemble, C*

Fig 3: 4-wise Schur 
product C4 = C* · C* · 
C* · C*

Fig 4: Correlations C 
loca l i zed by Schur-
multiplying with C4



Implicitly Localized MCMC Sampler to Cope With Non-local Data 
Constraints in Large-Size Inverse Problems

Brankart 2020, https://www.frontiersin.org/articles/10.3389/fams.2019.00058

Fig 1: 4 members of the prior ensemble, 
randomly chosen

Fig 2: 4 members of the posterior 
ensemble, randomly chosen (to be 
compared with the true field)

Schur products Markov Chain Acceptance/rejection



Implicitly Localized MCMC Sampler to Cope With Non-local Data 
Constraints in Large-Size Inverse Problems

Brankart 2020, https://www.frontiersin.org/articles/10.3389/fams.2019.00058

Figure: Blue cross: location of maximum in the true field. Red dots: ensemble members. This 
experiment illustrates the capability of the algorithm to deal with the non-local observation of the 
maximum location.

Prior ensemble
Posterior ensemble  
w i t h l o c a l 
observations only

Posterior ensemble 
with observation of 
maximum location 
only

Posterior ensemble 
w i t h l o c a l a n d 
maximum location 
observations



Background: 
The background idea of tracer image assimilation here is illustrated on the next slide: an SST image 
can be binarized by thresholding the spatial gradient intensity. The velocity field from the assimilative 
model is used to compute Finite-Size Lyapunov Exponents (FSLEs). Those FSLEs are also binarized 
with thresholding considerations to be comparable with the binarized image. This makes it possible 
to adjust a high-resolution model velocity field based on the high-resolution image, and access to an 
observation-constrained estimation of the fine-scale (<50 km) surface dynamics. 
The algorithm is based on a MCMC sampler characterized by slow (or no) convergence. The 
purpose of the persent work is to investigate the use of satellite altimetry assimilation as a 
preconditionner to image assimilation.

Multisensor assimilation: Combining assimilation of satellite altimetry 
and tracer images

Duran Moro et al 2017, https://doi.org/10.1007/s10236-017-1062-3

https://doi.org/10.1007/s10236-017-1062-3
https://doi.org/10.1007/s10236-017-1062-3


Multisensor assimilation: Combining assimilation of satellite altimetry 
and tracer images

Duran Moro et al 2017, https://doi.org/10.1007/s10236-017-1062-3

Figure: Principle of SST image assimilation to reconstruct fine-scale surface dynamics. Figure from 
Gaultier et al, 2013 (https://doi.org/10.1002/ 2013JC009660)

SST binarized image

Surface velocity Lyapunov exponents Binarized FSLE

Possible comparison 
and assimilation

https://doi.org/10.1007/s10236-017-1062-3
https://doi.org/10.1007/s10236-017-1062-3


Multisensor assimilation: Combining assimilation of satellite altimetry 
and tracer images

Duran Moro et al 2017, https://doi.org/10.1007/s10236-017-1062-3

Figure: 3 ensemble members
SSH FSLE from surface velocity

Before any assimilation

After assimilation of 
alt imetry (note that 
F S L E a r e w e l l 
preconditionned)

After assimilation of 
altimetry and FSLE

True SSH

True FSLE

https://doi.org/10.1007/s10236-017-1062-3
https://doi.org/10.1007/s10236-017-1062-3


Multisensor assimilation: Combined assimilation of satellite altimetry 
and satellite observations of surface currents

Background: 
Satellite altimetry provides information on geostrophic velocity. Future missions of wide-swath 
observation of surface velocity are being considered, which would complement altimetry w.r.t. 
ageostrophic surface velocity. This unpublished work investigated the combined assimilation of 
altimetry (nadir, SWOT) with wide-swath surface current observations (in prospect).



Multisensor assimilation: Combined assimilation of satellite altimetry 
and satellite observations of surface currents

Figure: Satellite altimetry observations (nadir, SWOT) and surface current observations (ESA/EE9 
SKIM project) are simulated  from the NEMO/NATL60 1/60° simulation, in a 10°x10° box in the Gulf 
Stream region, with realistic spatial and temporal sampling. These simulated observations are 
assimilated into a 1.5-layer QG model using a Back-and-Forth nudging technique. 
Left: true vorticity snapshot from the OGCM simulation. Then, from left to right: simultaneous 
snapshots from the assimilation of nadir altimetry, SWOT, and SWOT+SKIM, respectively. 
Assimilating SKIM improves the representation of vorticity.


