Nikolai Maximenko, Jan Hafner, and Per Knudsen

IPRC/SOEST, University of Hawaii, USA Denmark Technical University

Multi-scale interactions in ocean circulation analyzed using satellite and in situ observations and model outputs

Acknowledgements: D. Nechaev, C. Roach, O. Andersen, H. Kamachi, A. MacFadyen, L. Centurioni, V. Hormann
Enhanced mean dynamic topography (DTU17cMDT)

based on:
- GOCE geoid
- improved parameterization of ageostrophic currents
- extended satellite and in situ datasets

RMS MDT gradient signals and differences:
geodetic, oceanographic, difference.

400km

mm/km

zonal meridional

Knudsen et al., 2020, in press
Applications

Near-real time surface currents

Optimization of expedition plans

Near-real time model marine debris

Probability of success -- ocean conditions are accounted for.
Model simulations of debris drift from the 2011 tsunami in Japan

Simulations revealed significant differences between pathways of different windages suggesting that different areas were affected by different types of JTMD and at different times.

SCUD modeling explained all peaks, observed on the US/Canada west coast.

Maximenko et al., 2018
Close-range interactions between Lagrangian drifters

(a) Trajectories of four drifters, deployed in the FloatEco experiment, captured in November 2018 – February 2019 in a small submesoscale cyclonic eddy. Background in (a) is streamlines of geostrophic surface currents and in (b) contours of geostrophic vorticity, normalized by the local Coriolis parameter, for December 4, 2018. (c) Composite of eddy velocities relative to its center, calculated for the period November 21 – December 11, 2018.

(a) Schematic, illustrating calculations of the statistics of distances between pairs of particles. (b) Seasonal and full PDF’s of distances between pairs of historical drifters in the subtropical North Pacific.
Dynamics of mesoscale eddies, generated off of Mexico and reaching SPURS-2 area

Hasson et al. (2019)

SMOS SSS

SLA

Five drifters deployed in the “Mexican” eddy during SPURS-2. (in collaboration with L. Centurioni and V. Hormann)

Sudden death of the eddy with generation of strong monochromatic inertial oscillations

Lagrangian gyre in the eastern Tropical Pacific
Ongoing research: eddy response to variations of large-scale flow
(application to striations and beta-plumes)

Eddy velocities

- **meridional**
- **anticyclones**
- **cyclones**
- **zonal**

year

Phase speed of a Rossby wave

Large-scale flow

Westward drift

Eddy

Large-scale flow

direction of eddy movement
Ongoing research: eddy response to variations of large-scale flow (big picture)

Regression coefficients between monthly-averaged zonal and meridional components of velocities of mesoscale eddy and large-scale currents

Anticyclones: zonal

Anticyclones: meridional

Regression coefficients averaged zonally

Regression coefficients averaged meridionally
Current gridded AVISO SLA, based on short time-space correlations has higher energy on satellite tracks and passing times.

Technique of interpolation over large gaps needs to be improved.

Improved coverage in future satellite missions (SWOT) may help to do this.

Roach and Maximenko, OSTST 2017 poster