Ocean Surface Topography Science Team (OSTST October 2015 | Reston, Virginia, USA

Inter-calibrated wet path delays for eight altimetric missions

M. Joana Fernandes and Clara Lázaro

utline

- GNSS-derived Path Delay (GPD) methodology
 - Objectives and brief description
- Recent improvements: GPD+
 - Additional data sources
 - Inter-calibration of radiometers
- GPD+ WTC result examples
- Closing remarks and future developments

+ methodology

Coastal \rightarrow global

- Originally designed to calculate the Wet Tropospheric Correction (WTC) for RADAR Altimetry in the coastal zone, corrected for land contamination in the MWR footprint.
- Evolved to provide the WTC over open ocean (globally and corrected for ice contamination and spurious measurements e.g. instrument malfunction) and inland water.

Data combination using OA

- Combines Wet Path Delay (WPD) observations from different sources, using a space-time objective analysis scheme.
- The spatial/temporal variability of the WPD field and the accuracy
 of each data set are taken into account

in differences between GPD and GPD+

GPD+ Combines previous GPD and DComb algorithms

fore satellites: extended to 8 altimetry missions, including C2 and SA, thus llowing to fill the ENVISAT gap and extend the higher spatial resolution ESA atellite series until present;

Additional data: from scanning imaging radiometers (SI-MWR) on-board arious remote sensing satellites have been used, improving the WTC etrieval, particularly for the most recent missions such as C2 and SA;

nter-calibration: all radiometer data sets have been inter-calibrated, using ne set of SSM/I and SSM/IS on-board the DMSP satellite series (FXX) as eference

- improve consistency and long term stability of the correction
- reduce the uncertainty in the long term sea level variation (GOOS requirement: uncertainty < 0.3 mm/yr)

//WR WPD Observations

er-calibration of the various MWR sensors

0 – Comparison between each SI-MWR and ERA Interim

- Differences between each SI-MWR-derived WTC and ERA-derived WTC, collocated in space and time with each SI-MWR measurement point, were analyzed.
- Identified SI-MWR instability periods:
 - Rejection of F15 data;
 - MTA used only after 2008;
 - N15, N16 and N17 used only after 2005.2.

r-calibration of the various MWR sensors – step 0

Differences in MITO (and) from OL MIM/D concern (CONA/L CONA/LO TAL ANACD E

r-calibration of the various MWR sensors – step 0

Differences in MTC (and from CCN// CCN//C and from EDA Interim

r-calibration of the various MWR sensors – step 0

Differences in M/TC (and) from AMCLL A and from CDA Interim

er-calibration between all radiometers

e inter-calibration was performed in 3 steps

- Step1 TP, J1, J2 \rightarrow FXX
- Step2 35-day missions \rightarrow TP, J1, J2
- Step3 remaining SI-MWR \rightarrow TP, J1, J2

Adjustment model uses Offset (a), scale factor (b) and trend (c)

$$Y = a + bX + c(T - T_0), \quad T_0 = 1992$$

er-calibration between TP, J1, J2 and FXX

ep 1

 Match points between SSM/I and SSM/IS sensors and MWR onboard reference altimetric mission (TP, J1, J2) were calculated:

– Only points with $\Delta T < 45$ min and $\Delta D < 50$ km were considered.

 WTC from each reference altimetric mission was adjusted to WTC from SSM/I and SMM/IS set of sensors

er-calibration between TP, J1, J2 and FXX

tep 1

Mission	Offset (mm)	Scale factor	Trend (mm/y)
ТР	-8.1882	0.97720	0.1542
J1	-4.3642	0.98428	-0.1399
J2	-5.6329	0.97704	-0.2288

er-calibration between TP, J1, J2 and FXX

Differences in M/TO (and from COM/L COM/LC and from M/M/D an beard actallity

parison between TP, J1, J2 and ERA, before and after adjustment

Differences in M/TO (and from EDA Interim and from M/M/D an beard actallity

-calibration between 35-day and TP, J1, J2

tep 2 – 35-day missions

 Crossovers between each sun-synchronous 35-day altimetric mission (E1, E2, EN, SA) and the altimetry reference missions (TP, J1, J2) were calculated (matching points).

– Only points with a $\Delta T < 180$ min were considered.

 WTC from 35-day missions were calibrated against the WTC from reference missions using a crossover adjustment.

Mission	Offset (mm)	Scale factor	Trend (mm/y)
E1	-12.1711	0.96279	0. 1724
E2	-12.7178	0.95680	0. 0970
EN	-12.2356	0.95462	-0. 0809
SA	8.7741	1.03088	-0. 2130

-calibration between 35-day and TP, J1, J2

Differences in WTC (and) devised from actallity altimates, references relations and

-calibration between other SI-MWR and TP, J1, J2

p 3 – remaining SI-MWR

WTC from all remaining SI-MWR (except the FXX series) sensors were adjusted to the WTC from altimetric reference missions.

Mission	Offset (mm)	Scale factor	Trend (mm/y)
COR	-0.4262	0.98909	-0.0581
N15	-4.7925	1.01624	-0.0760
N16	-5.2776	1.01222	-0.0737
N17	-11.6989	0.98413	0.2560
N18	-2.5803	1.00950	-0.1422
N19	-2.8430	1.00711	-0.1673
AQU	-0.5598	0.99023	0.0134
TRM	0.1653	0.99514	-0.0327
ΜΤΑ	-2.5543	0.99882	-0.2594
MATO	E 4626	0 00672	0 1070

-calibration between other SI-MWR and TP, J1, J2

-calibration between other SI-MWR and TP, J1, J2

sults – TP phase A

T/P-A SLA trend differences: GPD+ - COMP (mm/yr)

.

sults – TP phase B

T/P-B SLA trend differences: GPD+ - COMP (mm/yr)

sults – Jason-2

cluding remarks and future developments

oncluding Remarks

For most missions, the new GPD+ products are shown to reduce sea level anomaly variance with respect to previous non-calibrated versions and to other WTC data sets such as the AVISO Composite or the model-based WTC.

Strongest impacts on sea level trends.

GDP+ WTC currently under independent validation in the scope of SL_cci project.

Validation by various groups using other methods and in situ data are welcome.

going and future developments

Sentinel-3 over ocean in the scope of SCOOP project.

Sentinel-3 over inland water in the scope of SHAPE projects.

CryoSat-2 – Operational production of GOP.