Towards a unique method for a global and multi-surface Wet Tropospheric Correction retrieval : a 1-D Variational approach

Laura Hermozo¹, Bruno Picard¹, Laurence Eymard², Fatima Karbou³, Estelle Obligis¹

¹ CLS, ² LOCEAN, ³ CNRM-GAME

✓ WTC Provided by :

Radiometer coupled to altimeter

TOA TBs at frequencies near water vapor absorption band

CURRENT WTC ALGORITHMS **Empirical approach**:

□ Regional corrections needed over

heterogeneous surfaces (coastal regions, land

waters, sea ice), upwelling regions

Ocean Surface Topography Science Team Meeting, Reston, 20-23 October 2015

Objectives of my PhD thesis ?

Propose a new solution inline with the new objectives of altimetry

→ Reach performances of reference WTC retrieval algorithm over ocean surfaces

→ Improve WTC retrieval algorithm performances over specific regions : upwelling regions, coastal regions, sea ice, inland waters

Description of the 1D-Var approach

• Need to adapt the background error covariance matrix (matrix B) to ECMWF input atmospheric profiles and surface variables

Scheme of matrix B in the 1D-Var minimization

Ocean Surface Topography Science Team Meeting, Reston, 20-23 October 2015

• Calculation of an adapted background error covariance matrix :

NMC method (Rabier et. al., 1998)

Background Errors standard deviation

• Observation inputs used for the 1D-Var approach...

✓ Radiometer : Advanced Microwave Radiometer (AMR)

- ✓ Coupled to altimeter onboard Jason-2
- ✓ 3-band nadir-viewing radiometer :
 18.7 GHz → surface roughness, wind
 23.8 GHz; 34 GHz → water vapor, clouds

✓ REFERENCE : AMR WTC

 \rightarrow provided by JPL and available in operationnal products (GDR, see aviso website)

✓ Period: 01/2012 – 03/2012

✓ Statistics for clear sky conditions (AMR CLWC = 0)

- → 30% of total nb of estimations
- → nb of points/bin: ≈25-40 (mid-latitudes) // ≈10-15 (low latitudes)

mean	= 0.05 cm
std	= 0.6 cm

Ocean Surface Topography Science Team Meeting, Reston, 20-23 October 2015

First results :

Impact of the retrievals on Sea Surface Height (SSH)

 \rightarrow assumption : stability of the sea state below 10 days (\rightarrow low variance of SSH)

✓ Period: 01/2012 – 03/2012

✓ Statistics for clear sky & cloudy conditions

 $mean = 3.91 \text{ cm}^2$

 $std = 0.83 \text{ cm}^2$

IMPROVEMENT

DEGRADATION

A validation tool to evaluate the performance of WTC retrievals

• Benefits of this new approach:

 ✓ Valid over different types of surfaces and different atmospheric conditions using model atmospheric profile and surface characteristics

(≠ current WTC retrieval algorithms : valid for mean conditions only)

- ✓ As good as reference WTC algorithm over mean ocean conditions
- Better than reference WTC algorithm over heterogeneous surfaces (upwelling regions over ocean, near coast, sea ice, inland waters)

Further improvements

✓ WTC estimations over **cloudy conditions**

 \rightarrow use of profiles of cloud liquid water content in 1D-Var process

✓ Integration of **zonal/seasonal background errors**

 \rightarrow background error covariance matrix adapted to climate scales

✓ Evaluation of **impact of colocations** on 1D-Var WTC retrievals : time gap between background (model) and observations (measurements) < 3h

 \rightarrow solution to avoid time gaps (*interpolation of model in time?*)

- ✓ Application of non oceanic / heteregenous surface
 - ✓ Use of **additional surface information** for WTC retrieval over heterogeneous surfaces (coastal regions, sea ice, inland waters)
 - \rightarrow integration of surface emissivities in the 1D-Var process
 - → integration of **surface emissivities** *from other frequencies* in the 1D-Var process

✓ Validation of WTC retrievals over coastal areas, sea ice, inland waters : comparison with insitu measurements (radiosondes)