

Impact of the antenna diagram approximation in conventional altimetry WF processing

Application to SARAL/AltiKa data

Sophie Le Gac, F. Boy, A. Guillot, J.D. Desjonqueres, N. Picot (CNES) J.C. Poisson, F. Piras, G. Bracher, P. Thibaut, G. Valladeau (CLS)

OSTST – Reston, VA, USA – October 20-23, 2015

Impact of the antenna diagram approximation in conventional altimetry WF processing

Application to SARAL/AltiKa data

Sophie Le Gac, F. Boy, A. Guillot, J.D. Desjonqueres, N. Picot (CNES) J.C. Poisson, F. Piras, G. Bracher, P. Thibaut, G. Valladeau (CLS)

OSTST – Reston, VA, USA – October 20-23, 2015

In current ocean retrackers using the Brown model :

Altimeter's antenna diagram ≈ Gaussian

What about **possible distorsions** in the antenna diagram ? Or **narrow antenna beamwidth** ?

What does AltiKa antenna diagram look like ?

The antenna diagram and the Gaussian approximation

Cnes

Echo simulations [2/3]

Different echoes are simulated using **double convolution** :

 $S(t) = FSSR(t) \otimes PTR(t) \otimes PDF(t)$

Gaussian Gain ⊗ Gaussian PTR ⊗ PDF ⇔ current

Real Gain 🛇 Gaussian PTR 🛇 PDF 🛛 🖙 impact of AltiKa antenna gain

The impact is the difference between MLE-4 estimate and expected (input) value :

Echo simulations [3/3]

Different echoes are simulated using **double convolution** :

 $S(t) = FSSR(t) \otimes PTR(t) \otimes PDF(t)$

Coes

Gaussian Gain ⊗ Gaussian PTR ⊗ PDF ⇔ current

Real Gain 🛇 Gaussian PTR 🛇 PDF 🛛 🖙 impact of AltiKa antenna gain

The impact is the difference between MLE-4 estimate and expected (input) value :

Impact on ξ² +0.04 deg 0.0020 0.0015 SquareMis estim (deg^2) 2 m 8 m 0.0010 The impacts are 0.0005 important ! 0.0000 -0.0005 How do we take them -0.0010^L 8 10 Waveheight (m) into account? Direct impact of the antenna diagram on mispointing angle : + 0.02° @2m SWH -0.02° @8m SWH

Correction strategy : Update of the Look-Up Tables

In the **PEACHI product**, a correction will be applied to account for AltiKa antenna diagram impact :

- Antenna diagram used as polynomial interpolation projected on the waveform samples _
- LUT computation _
- Correction of MLE-4 estimates : Epoch, SWH, as well as Mispointing and Sigma0

Results on AltiKa data (Cycle 10) : mispointing angle

Conclusions and perspectives [1/2]

Gaussian approximation and the case of AltiKa

- The antenna diagram is currently approximated using Gaussian distribution (in the FSSR of the Brown Model) ٠
- AltiKa's antenna has a small footprint : narrower than the waveform footprint ٠
- AltiKa real antenna pattern shows differences with the Gaussian approximation (up to 0.6 dB locally in the waveform footprint)
- AltiKa antenna diagram has been interpolated on the waveform samples and included in the Brown model ٠

Impact on MLE4 retracking estimates :

- The impact of the Gaussian approximation is **important**:
 - \rightarrow 0.5% SWH on Epoch (1-4 cm)
 - \rightarrow 1.3% SWH on SWH (4-12cm)
 - \rightarrow Up to 0.02° on mispointing

Results on AltiKa

- Look-up tables have been computed, using the real AltiKa antenna diagram, to correct for this impact Le Gac et al.
- The retrieved mispointing angle dependency wrt SWH has been strongly reduced

\rightarrow The PEACHI prototype, delivering experimental AltiKa products, will include this correction in its next release See PEACHI poster (G. Valladeau)

Paper in prep

Conclusions and perspectives [2/2]

Current understanding

- The SLA products are OK !
- ... Because the impact of the antenna diagram is « absorbed » in the Sea State Bias (SSB) correction
- With the antenna taken into account, we foresee that Ka SSB < Ku SSB, as expected from theory

Antenna diagram correction strategy

→ Correction using Look-Up Tables (cf. PEACHI)

- LUT approach is relevant because the antenna diagram is stable
- Offline computation, easy to implement in the ground segment processing
- As a result, SSB correction closer to expected physical behavior (cf. SSB computed for PEACHI)

→ Numerical retracking

- Would be the finest solution
- Convolution with real antenna pattern is highly time consuming (requires oversampling by 16000)

What about Ku-band altimeters ? E.g. Cryosat-2, Jason-3, Sentinel-3...

- Same study has been conducted on Jason-3 :
 - → impact on retracked estimates is much lower than AltiKa: 0.1% SWH on Epoch, 0.4% SWH on SWH
- It has to be studied on Cryosat-2 because of the ellipticity of its antenna pattern (according to ESA)

This correction is a potential candidate for future updates of GDR standards on AltiKa and Jason.

High potential for all altimetry missions, LRM and SAR modes

Thank you for your attention

Don't forget on Thursday, IPM poster session... PEACHI_Jason-3 Sophie Le Gac => IPM_003 PEACHI (AltiKa) Guillaume Valladeau => IPM_004

Echo simulations [2/3]

Different echoes are simulated using **double convolution** :

 $S(t) = FSSR(t) \otimes PTR(t) \otimes PDF(t)$

Gaussian Gain ⊗ Gaussian PTR ⊗ PDF⇔ current, except double convolutionReal Gain ⊗ Gaussian PTR ⊗ PDF⇔ impact of AltiKa antenna gainReal Gain ⊗Real PTR ⊗ PDF⇔ double convolution

The impact is the difference between MLE-4 estimate and expected (input) value :

Echo simulations [3/3]

Different echoes are simulated using **double convolution** :

 $S(t) = FSSR(t) \otimes PTR(t) \otimes PDF(t)$

Gaussian Gain ⊗ Gaussian PTR ⊗ PDF⇔ current, except double convolutionReal Gain ⊗ Gaussian PTR ⊗ PDF⇔ impact of AltiKa antenna gainReal Gain ⊗Real PTR ⊗ PDF⇔ double convolution

The impact is the difference between MLE-4 estimate and expected (input) value :

