Improved SAR-mode ocean retrievals from new Cryosat-2 processing schemes

T. Moreau, L. Amarouche, J. Aublanc, A. Vernier, P. Thibaut (CLS) F. Boy, N. Picot (CNES)

OSTST - Reston, USA - 19-23 October 2015

CONTEXT

 CNES/CLS have undertaken several studies aiming at developing alternative SARM processing schemes that would enable to take maximum advantage of SAR mode capabilities over ocean

➔ in preparation for S-3, S-6 and other SARM missions

- To perform these studies, we take benefits of the availability of Cryosat-2 data and the existing tools:
 - the easy-to-use and versatile L0 to L2 SAR CNES Cryosat-2 processor (CPP),
 - the **SAR altimeter simulator** to generate SAR echo models that mimic the altimeter response of any configurations (without the need to modify any analytical model formulation and with no approximations)

Objectives :

cnes

- To improve the noise reduction performance
- To ensure data quality continuity with LRM while not degrading small-scales signal (<100km)

OSTST - Reston, USA - 19-23 October 2015

RETRIEVAL OF SAR OCEAN PARAMETERS cycle deb/trace deb = 32/1 | cycle fin/trace fin = 33/1SAR-mode measurements consist of: Mean PSD of SLA Bursts: 1, 2, 3, 4,, k-2, k-1, s C motion 10 direction Spectrum(m2.km) 10 10 Averaging of co-localised Doppler beams (looks) in the stack 10^{-2} 10 10 → SAR power echo (multilooked) Wavenumber(cpkm) Averaged waveform retracking 0.25 → Model fitted with waveform 0.20 → Range, swh and sigma0 estimation 0.15 0.10 No-degraded performances with 100 Ē looks (even lower if no-mispointing) 0.05 bias MH 0.00 Similar 20-Hz noise levels -0.05 No SLA bias and reduced SWH bias SAR 212 Looks - RDSAR AR 124 Looks - RDSAR -0.10 with PLRM AR 100 Looks - RDSAR -0.15 SAR 76 Looks - RDSAR 20-Hz SWH bias Same oceanic signal content (from SAR 52 Looks - RDSAR -0.20 L 2 spectra analysis) З SWH RDSAR (m)

THEORETICAL STUDY OF SARM SPECKLE NOISE L.Amarouche, SAR Altimetry Expert Group Meeting, Southampton, June 2013 High inhomogeneity between Doppler beams in a stack Along-track variation in amplitude from beam to beam due to antenna gain Different mean shapes in range due to inaccurate migration corrections Reams SWH 0 m Sample 46 Sample 44 Number of looks Expected speckle noise reduction: \sqrt{v} \sqrt{N} in conventional altimetry since individual echoes are quite similar in amplitude α_i =0 and incoherently cumulated mean power variations within the stacked beams Effective number of looks is lower than the number of beams OSTST - Reston, USA - 19-23 October 2015 - 6 -

NEW SARM PROCESSING METHOD

L.Amarouche, SAR Altimetry Expert Group Meeting, Southampton, June 2013

- Number of effective Doppler beams
 - High speckle reduction for samples whose beam-to-beam discrepancies are low
 - Low speckle reduction for large variation of echo amplitude
 - Lowest values in the leading edge for low swh
 - → increased noise level while retracking Doppler echoes at low wave height

OPTIMISED SAR OCEAN NUMERICAL RETRACKING

• CPP retrieval algorithm (MLE3) is based on a Newton-Raphson iterative least squares method which uses partial numerical derivatives of the multilooked model to solve the system (as for Levenberg-Marquardt method)

$$\theta_n = \theta_{n-1} - g(BB^T)^{-1} \theta_{n-1} (BD)_{\theta_{n-1}}$$

- θ_n ocean parameters vector
- *B* derivatives matrix
- D residuals matrix

- Un-weighted least-square estimator gives more importance to samples of high amplitude (given by antenna gain) and constrains the echo model to fit mostly with those samples (from the centered Doppler beams)

OPTIMISED SAR OCEAN NUMERICAL RETRACKING

 A weighted MLE3 retracking (aka Maximum-likehood estimator algorithm) gives more importance to portions of the waveform with low power

- V_k echo model in power
- \overline{V}_k measured waveform
- ε positive constant to prevent instabilities and numerical convergence issues
- k samples from 0 to 127
- *m* parameters (τ , swh, P_u)

Analysis of 1-month Cryosat-2 data

- Higher bias for low ε
- No significant bias for $\varepsilon = \frac{1}{4}$ Vmax
- 20-Hz noise reduction (ε = ¼ Vmax)
 - > SLA 10% (SWH @2m)
 - SWH 20% (SWH @2m)
 - Sigma0 25% (SWH @2m)
- Same oceanic signal content (from spectra analysis)
- A likehood estimator weighted in Doppler beams would provide more improvements

OCEAN

⇒θ_k

- An alternative processing method will be analysed that would further improve SARM performances:
 - To process each individual look

rneg

- An alternative processing method will be analysed that would further improve SARM performances:
 - To process each individual look

- An alternative processing method will be analysed that would further improve SARM performances:
 - To process each individual look

OCEAN

 $\Rightarrow \theta_{k+3}$

- An alternative processing method will be analysed that would further improve SARM performances:
 - To process each individual look

- 14 -

OCEAN

 $\Rightarrow \theta_{k+3}$

- An alternative processing method will be analysed that would further improve SARM performances:
 - To process each individual look
 - Then "average" their estimates θ_k
 - $\theta = 1/L \Sigma(.. + \theta_k + \theta_{k+1} + \theta_{k+2} + \theta_{k+3})$

OSTST – Reston, USA – 19-23 October 2015

- An alternative processing method will be analysed that would further improve SARM performances:
 - To process each individual look
 - Then "average" their estimates θ_k

 $\theta = 1/L \Sigma(.. + \theta_k + \theta_{k+1} + \theta_{k+2} + \theta_{k+3})$

➔ Making all Doppler beams with equal contribution to the noise reduction

 With no beams weighting (e.g., antenna pattern compensation, stack beam weighting)

➔ Enabling to assess the model consistency (checking any discrepancies between nadir/off-nadir look estimates)

OCEAN

 $\Rightarrow \theta_{k+3}$

cnes

OSTST – Reston, USA – 19-23 October 2015

OCEAN

 $\Rightarrow \theta_{k+3}$

- An alternative processing method will be analysed that would further improve SARM performances:
 - To process each individual look
 - Then "average" their estimates θ_k
 - $\theta = 1/L \Sigma(.. + \theta_k + \theta_{k+1} + \theta_{k+2} + \theta_{k+3})$

➔ Making all Doppler beams with equal contribution to the noise reduction

 With no beams weighting (e.g., antenna pattern compensation, stack beam weighting)

➔ Enabling to assess the model consistency (checking any discrepancies between nadir/off-nadir look estimates)

 Beams alignment before multilooking can be disrupted by inaccurate COR2 command (computed on-board)

➔ Tracker range alignment is not applied herein (only distance migration correction) mitigating possible errors

SEA ICE

20

 No valuable data for tracks perpendicular to the coast line at distance < 4-5km despite its high along-track resolution

➔ To edit inconsistent looks (after along-track Hamming weighting) still contaminated by land / calm sea (also interest in sea ice and inland water regions, and ocean to mitigate possible time-varying surfaces)

OSTST – Reston, USA – 19-23 October 2015

SEA ICE

 $\Rightarrow \theta_{k+3}$

 \mathcal{O}

 No valuable data for tracks perpendicular to the coast line at distance < 4-5km despite its high along-track resolution

➔ To edit inconsistent looks (after along-track Hamming weighting) still contaminated by land / calm sea (also interest in sea ice and inland water regions, and ocean to mitigate possible time-varying surfaces)

 $\theta = 1/L \Sigma(.. + \theta_k + \theta_{k+1} + \theta_{k+2} + \theta_{k+3})$

OSTST – Reston, USA – 19-23 October 2015

- Different configurations of Doppler processing have been studied showing potential improvement of SAR-mode performances
 - A theoretical study based on the assessment of the SAR-mode speckle noise have shown the critical aspects of the actual SAR-mode processing
 - The weighted likehood estimator (to account for contributions of off-nadir Doppler beams in estimation better noise reduction)

- Different configurations of Doppler processing have been studied showing potential improvement of SAR-mode performances
 - A theoretical study based on the assessment of the SAR-mode speckle noise have shown the critical aspects of the actual SAR-mode processing
 - The weighted likehood estimator (to account for contributions of off-nadir Doppler beams in estimation better noise reduction)
 - Other processing have already been assessed
 - A delay-Doppler configuration with lower along-track resolution (expected better noise 0 reduction)
 - Pseudo-SAR from TAS (providing better noise reduction) Oversampling x2 (lower SWH noise level) Ο
 - \cap

OSTST - Reston, USA - 19-23 October 2015

- Different configurations of Doppler processing have been studied showing potential improvement of SAR-mode performances
 - A theoretical study based on the assessment of the SAR-mode speckle noise have shown the critical aspects of the actual SAR-mode processing
 - The weighted likehood estimator (to account for contributions of off-nadir Doppler beams in estimation better noise reduction)
 - Other processing have already been assessed
 - A delay-Doppler configuration with lower along-track resolution (expected better noise 0 reduction)
 - Pseudo-SAR from TAS (providing better noise reduction) Oversampling x2 (lower SWH noise level) Ο
 - 0

The individual Doppler retracking method will be implemented and analyzed in the ESA/SCOOP project

- Different configurations of Doppler processing have been studied showing potential improvement of SAR-mode performances
 - A theoretical study based on the assessment of the SAR-mode speckle noise have shown the critical aspects of the actual SAR-mode processing
 - The weighted likehood estimator (to account for contributions of off-nadir Doppler beams in estimation better noise reduction)
 - Other processing have already been assessed
 - A delay-Doppler configuration with lower along-track resolution (expected better noise 0 reduction)
 - Pseudo-SAR from TAS (providing better noise reduction) Oversampling x2 (lower SWH noise level) Ο
 - 0
 - The individual Doppler retracking method will be implemented and analyzed in the ESA/SCOOP project
- Major interest for SAR-mode missions (S-3, S-6, ...)

OSTST - Reston, USA - 19-23 October 2015

- Different configurations of Doppler processing have been studied showing potential improvement of SAR-mode performances
 - > A theoretical study based on the assessment of the SAR-mode speckle noise have shown the critical aspects of the actual SAR-mode processing
 - > The weighted likehood estimator (to account for contributions of off-nadir Doppler beams in estimation - better noise reduction)
 - Other processing have already been assessed
 - A delay-Doppler configuration with lower along-track resolution (expected better noise 0 reduction)
 - Pseudo-SAR from TAS (providing better noise reduction) Oversampling x2 (lower SWH noise level) 0
 - 0
 - The individual Doppler retracking method will be implemented and analyzed in the ESA/SCOOP project
- Major interest for SAR-mode missions (S-3, S-6, ...)
- **On-going investigations applied to S-3 data with CNES Processor**
- The existing tools (Processing Prototype, simulator and validation tools) are also used to study ice regions and in-land waters in SAR mode

