Improved SAR-mode ocean retrievals from new Cryosat-2 processing schemes

T. Moreau, L. Amarouche, J. Aublanc, A. Vernier, P. Thibaut (CLS)
F. Boy, N. Picot (CNES)
To perform these studies, we take benefits of the availability of Cryosat-2 data and the existing tools:

- the easy-to-use and versatile **L0 to L2 SAR CNES Cryosat-2 processor (CPP)**,
- the **SAR altimeter simulator** to generate SAR echo models that mimic the altimeter response of any configurations (without the need to modify any analytical model formulation and with no approximations)

Objectives:
- To improve the noise reduction performance
- To ensure data quality continuity with LRM while not degrading small-scales signal (<100km)
DATA ANALYSIS AND ALGORITHMS VALIDATION

CRYOSAT-2 DELAY-DOPPLER PROCESSING (L0/L1B)

SIMULATION AND ECHO MODEL GENERATION

ECHO PROCESSING (L2) FOR PARAMETER ESTIMATION

DATA ANALYSIS AND ALGORITHMS VALIDATION

CRYOSAT-2 DELAY-DOPPLER PROCESSING (L0/L1B)

SIMULATION AND ECHO MODEL GENERATION

ECHO PROCESSING (L2) FOR PARAMETER ESTIMATION

DATA ANALYSIS AND ALGORITHMS VALIDATION
SAR-mode measurements consist of:

- Averaging of co-localised Doppler beams (looks) in the stack
 - SAR power echo (multilooked)
- Multilooked SAR echo power
- Range integrated power in the stack

RETRIEVAL OF SAR OCEAN PARAMETERS

- Model fitted with waveform
 - Range, swh and sigma0 estimation

- No-degraded performances with 100 looks (even lower if no-mispointing)
 - Similar 20-Hz noise levels
 - No SLA bias and reduced SWH bias with PLRM
 - Same oceanic signal content (from spectra analysis)
RETRIEVAL OF SAR OCEAN PARAMETERS

From the actual processing/retracking scheme, outer looks have no impact on SAR performances (notably range)

How to take advantage from these contributions?

- No-degraded performances with 100 looks (and lower if no-mispointing)
- Similar 20-Hz noise levels
- No SLA bias and reduced SWH bias with PLRM
- Same oceanic signal content (from spectra analysis)
• High inhomogeneity between Doppler beams in a stack
 ▪ Along-track variation in amplitude from beam to beam due to antenna gain
 ▪ Different mean shapes in range due to inaccurate migration corrections

• Expected speckle noise reduction:
 • \sqrt{N} in conventional altimetry since individual echoes are quite similar in amplitude $\alpha_i=0$ and incoherently cumulated

\[
\frac{a}{\sqrt{v}} = \frac{\sqrt{N}}{\sqrt{1 + \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\alpha_i}{a} \right)^2}}
\]

Effective number of looks is lower than the number of beams
NEW SARM PROCESSING METHOD
L.Amarouche, SAR Altimetry Expert Group Meeting, Southampton, June 2013

- Number of effective Doppler beams
 - High speckle reduction for samples whose beam-to-beam discrepancies are low
 - Low speckle reduction for large variation of echo amplitude
 - Lowest values in the leading edge for low swh
 - increased noise level while retracking Doppler echoes at low wave height

[Graph showing equivalent independent pulses vs SWH in a stack]
OPTIMISED SAR OCEAN NUMERICAL RETRACKING

- CPP retrieval algorithm (MLE3) is based on a Newton-Raphson iterative least squares method which uses partial numerical derivatives of the multilooked model to solve the system (as for Levenberg-Marquardt method)

\[\theta_n = \theta_{n-1} - g(BB^T)^{-1}(BD)\theta_{n-1} \]

- Un-weighted least-square estimator gives more importance to samples of high amplitude (given by antenna gain) and constrains the echo model to fit mostly with those samples (from the centered Doppler beams)

- More weight has to be assigned to low power samples of the waveform to constrain the model to fit those portions that originate from outer beams (toe)
A weighted MLE3 retracking (aka Maximum-likehood estimator algorithm) gives more importance to portions of the waveform with low power

\[
B_{rk} = \frac{1}{P_u} \frac{\partial V_k}{\partial \theta_m} \\
D_k = \frac{V_k - \tilde{V}_k}{P_u}
\]

\[
B_{rk} = \frac{1}{V_k + \varepsilon} \frac{\partial V_k}{\partial \theta_m} \\
D_k = \frac{V_k - \tilde{V}_k}{V_k + \varepsilon}
\]

- **Analysis of 1-month Cryosat-2 data**
 - Higher bias for low \(\varepsilon \)
 - No significant bias for \(\varepsilon = \frac{1}{4} V_{\text{max}} \)
 - 20-Hz noise reduction \((\varepsilon = \frac{1}{4} V_{\text{max}}) \)
 - SLA 10% (SWH @2m)
 - SWH 20% (SWH @2m)
 - Sigma0 25% (SWH @2m)
 - Same oceanic signal content (from spectra analysis)

\(\varepsilon \) positive constant to prevent instabilities and numerical convergence issues
\(k \) samples from 0 to 127
\(m \) parameters \((\tau, \text{swh}, P_u)\)
INDIVIDUAL DOPPLER BEAMS RETRACKER

- An alternative processing method will be analysed that would further improve SARM performances:
An alternative processing method will be analysed that would further improve SARM performances:

- To process each individual look
An alternative processing method will be analysed that would further improve SARM performances:

- To process each individual look
An alternative processing method will be analysed that would further improve SARM performances:

- To process each individual look

\[\theta_{k+2} \]
An alternative processing method will be analysed that would further improve SARM performances:

- To process each individual look
An alternative processing method will be analysed that would further improve SARM performances:

- To process each individual look
- Then “average” their estimates θ_k

$$\theta = \frac{1}{L} \sum (\ldots + \theta_k + \theta_{k+1} + \theta_{k+2} + \theta_{k+3})$$
An alternative processing method will be analysed that would further improve SARM performances:

- To process each individual look
- Then “average” their estimates θ_k

$$\theta = \frac{1}{L} \sum (.. + \theta_k + \theta_{k+1} + \theta_{k+2} + \theta_{k+3})$$

- Making all Doppler beams with equal contribution to the noise reduction
 - With no beams weighting (e.g., antenna pattern compensation, stack beam weighting)

- Enabling to assess the model consistency (checking any discrepancies between nadir/off-nadir look estimates)
INDIVIDUAL DOPPLER BEAMS RETRACKER

• An alternative processing method will be analysed that would further improve SARM performances:
 ▪ To process each individual look
 ▪ Then “average” their estimates \(\theta_k \)
 \[
 \theta = \frac{1}{L} \sum (.. + \theta_k + \theta_{k+1} + \theta_{k+2} + \theta_{k+3})
 \]
 ➔ Making all Doppler beams with equal contribution to the noise reduction
 ▪ With no beams weighting (e.g., antenna pattern compensation, stack beam weighting)
 ➔ Enabling to assess the model consistency (checking any discrepancies between nadir/off-nadir look estimates)

• Beams alignment before multilooking can be disrupted by inaccurate COR2 command (computed on-board)
 ➔ Tracker range alignment is not applied herein (only distance migration correction) mitigating possible errors
INDIVIDUAL DOPPLER BEAMS RETRACKER

- No valuable data for tracks perpendicular to the coast line at distance < 4-5km despite its high along-track resolution

To edit inconsistent looks (after along-track Hamming weighting) still contaminated by land / calm sea

$$\theta = \frac{1}{L} \sum_{k} (\ldots + \theta_k + \theta_{k+1} + \theta_{k+2} + \theta_{k+3})$$
• No valuable data for tracks perpendicular to the coast line at distance < 4-5km despite its high along-track resolution

To edit inconsistent looks (after along-track Hamming weighting) still contaminated by land / calm sea (also interest in sea ice and inland water regions, and ocean to mitigate possible time-varying surfaces)
INDIVIDUAL DOPPLER BEAMS RETRACKER

- No valuable data for tracks perpendicular to the coast line at distance < 4-5km despite its high along-track resolution

⇒ To edit inconsistent looks (after along-track Hamming weighting) still contaminated by land / calm sea (also interest in sea ice and inland water regions, and ocean to mitigate possible time-varying surfaces)
• No valuable data for tracks perpendicular to the coast line at distance < 4-5km despite its high along-track resolution

To edit inconsistent looks (after along-track Hamming weighting) still contaminated by land / calm sea (also interest in sea ice and inland water regions, and ocean to mitigate possible time-varying surfaces)
INDIVIDUAL DOPPLER BEAMS RETRACKER

- No valuable data for tracks perpendicular to the coast line at distance < 4-5km despite its high along-track resolution

To edit inconsistent looks (after along-track Hamming weighting) still contaminated by land / calm sea (also interest in sea ice and inland water regions, and ocean to mitigate possible time-varying surfaces)

$$\theta = \frac{1}{L} \Sigma (\theta_k + \theta_{k+1} + \theta_{k+2} + \theta_{k+3})$$
CONCLUSIONS & PERSPECTIVES

• Different configurations of Doppler processing have been studied showing potential improvement of SAR-mode performances
 ➢ A theoretical study based on the assessment of the SAR-mode speckle noise have shown the critical aspects of the actual SAR-mode processing
 ➢ The weighted likelihood estimator (to account for contributions of off-nadir Doppler beams in estimation - better noise reduction)
CONCLUSIONS & PERSPECTIVES

• Different configurations of Doppler processing have been studied showing potential improvement of SAR-mode performances

 Ø A theoretical study based on the assessment of the SAR-mode speckle noise have shown the critical aspects of the actual SAR-mode processing

 Ø The weighted likelihood estimator (to account for contributions of off-nadir Doppler beams in estimation - better noise reduction)

 Ø Other processing have already been assessed
 o A delay-Doppler configuration with lower along-track resolution (expected better noise reduction)
 o Pseudo-SAR from TAS (providing better noise reduction)
 o Oversampling x2 (lower SWH noise level)
CONCLUSIONS & PERSPECTIVES

- Different configurations of Doppler processing have been studied showing potential improvement of SAR-mode performances
 - A theoretical study based on the assessment of the SAR-mode speckle noise have shown the critical aspects of the actual SAR-mode processing
 - The weighted likelihood estimator (to account for contributions of off-nadir Doppler beams in estimation - better noise reduction)
 - Other processing have already been assessed
 - A delay-Doppler configuration with lower along-track resolution (expected better noise reduction)
 - Pseudo-SAR from TAS (providing better noise reduction)
 - Oversampling x2 (lower SWH noise level)
 - The individual Doppler retracking method will be implemented and analyzed in the ESA/SCOOP project
CONCLUSIONS & PERSPECTIVES

- Different configurations of Doppler processing have been studied showing potential improvement of SAR-mode performances
 - A theoretical study based on the assessment of the SAR-mode speckle noise have shown the critical aspects of the actual SAR-mode processing
 - The weighted likelihood estimator (to account for contributions of off-nadir Doppler beams in estimation - better noise reduction)
 - Other processing have already been assessed
 - A delay-Doppler configuration with lower along-track resolution (expected better noise reduction)
 - Pseudo-SAR from TAS (providing better noise reduction)
 - Oversampling x2 (lower SWH noise level)
 - The individual Doppler retracking method will be implemented and analyzed in the ESA/SCOOP project
- Major interest for SAR-mode missions (S-3, S-6, ..)
CONCLUSIONS & PERSPECTIVES

• Different configurations of Doppler processing have been studied showing potential improvement of SAR-mode performances
 ➢ A theoretical study based on the assessment of the SAR-mode speckle noise have shown the critical aspects of the actual SAR-mode processing
 ➢ The weighted likehood estimator (to account for contributions of off-nadir Doppler beams in estimation - better noise reduction)
 ➢ Other processing have already been assessed
 o A delay-Doppler configuration with lower along-track resolution (expected better noise reduction)
 o Pseudo-SAR from TAS (providing better noise reduction)
 o Oversampling x2 (lower SWH noise level)
 ➢ The individual Doppler retracking method will be implemented and analyzed in the ESA/SCOOP project

• Major interest for SAR-mode missions (S-3, S-6, ..)
• On-going investigations applied to S-3 data with CNES Processor
• The existing tools (Processing Prototype, simulator and validation tools) are also used to study ice regions and in-land waters in SAR mode