

Improved orbit centering parameterization for mean sea level applications

A. Couhert, <u>F. Mercier</u> CNES DCT/SB/OR

Comparison of N/S centering of the orbits

Jason-2 mean Z orbit differences between GPS-derived and DORIS-only GDR-D dynamic orbits

Long-term Analysis of Possible Remaining Sources of Orbit Error

Is it possible to improve this situation ?

(4 mm annual N/S between GPS and Doris orbits with CoM correction)

- one possible way is to add SLR (cf N. Zelensky OSTST 2014)

- or improve the Doris only processing : sensitivity of the Doris solutions in N/S direction

Network translations global adjustment, Jason 2

Centering analysis using global network solution (3 translations)

very important amplitudes in Z (N/S) direction, not realistic the results are very sensitive to elevation cutoff (> 20 degrees)

(Systematic biases in DORIS-derived geocenter time series related to solar radiation pressure mis-modeling; M.L. Gobinddas J Geod 2009) (OSTST 2014 presentation A. Couhert)

X and Y (equatorial plane) consistent with SLR results (J. Ries)

OSTST 2014, results for geocentre motion estimation

cnes

Analysis of station positioning

Fixed orbits, stations positioning, CF adjusted :

Station positioning is more sensitive to measurement model errors than the orbit

Yarragadee vertical position estimation, fixed Jason 2 orbit

The vertical modeling errors are probably an important error source

How to minimize the vertical errors (troposphere...) for the N/S global motion?

Jason 2 Doris dynamic solution, 10 days arcs stations positions adjustment, wet ztd, frequency, loose constraints (10 m) cutoff 10 degrees

construction of network normal equations, for each arc

parameters

- 3 translations, 3 rotations
- 3 translations, 3 rotations, stations vertical displacement

Global results : 6 parameters model

Cones

Z motion is not realistic, similar to OSTST 2014 results (10 ° min elevation)

Global results : 6 parameters model and stations vertical displacement

cnes

Z motion is noiser but less annual effects, similar observability in X and Y

Annual periodic term, 6 parameters

Annual periodic term, 6 parameters, radial displacements

Comparaison with slr geocentre motion (J. Ries estimation)

Vertical information (station position+tropo) may be erroneous

error in the current model used in POD ? troposphere correction, coupling with vertical displacement

Model with 6 global parameters only : not sufficient

Model with 6 global parameters and station radial displacement : better results

correct observation of X and Y N/S motion is still not well observed, but the error is realistic

Orbits comparison

Doris orbits comparison

Doris dynamic arcs, with added parameters

- 3 translations on each station

this orbit is not perturbed by station positions errors but a transverse alignment must be added

- 3 global translations and one vertical displacement for each station no network global rotation, the orbits are directly obtained without rotations alignment

Comparison with other solutions

- no geocentre model
- SLR geocentre model
- 3 global translations only
- 3 global translations and vertical displacements

comparison with JPL GPS orbits or GDR-E GPS/Doris red. dyn.

3 mm rms

in radial

Global results

	SLR high el.	(cm) All	Crosso mm	ver mm^2
No CoM	1.09	1.99	5.1	-0.2
СОМ	1.07	1.95	5.2	0.
3 trans.	1.11	2.06	5.8	1.5
3 trans. + vert	. 1.09	1.91	5.6	1.8
GPS red. Dyn.	0.75	0.90	0.6	
The (3 trans. + vert.) model has good results however				

Cones

Orbits N/S translations compared with GPS red. dyn.

Effect of stations choice

Effect of stations choice on network centering (some stations may be more sensitive to these model errors)

Choice of stations with 'correct' positioning time history for 2008-2015 (no jumps, small annual effects)

New solution with reduced network (17 stations), global x,y,z adjusted

Effect of stations choice

Cones

<u>Network</u> N/S centering is very sensitive to vertical modeling errors

Vertical modeling must be improved (troposphere model errors...)

3 trans. (+ 3 rot.) : noise OK but annual periods not realistic

3 trans. + vert disp. 3 trans., 17 stations, Increased noise, better annual amplitudes, biases ?

<u>Orbits</u> Orbits with adjusted x,y,z for all stations have a good radial performance - small sensitivity to stations positioning

- CoM referenced

N/S centering of Doris orbits, comparison with GPS red. dyn. :

- with CoM modelling (4.7 mm annual)
- adjusted 3 trans. not satisfactory (12.8 mm)
- adjusted 3 trans. + vert. disp. better (8.2 mm)

Thank you

