Evolution of the TOPEX products from MGDR-B to GDR-F over 1992-2002

Jet Propulsion Laboratory, California Institute of Technology
Matthieu Talpe on behalf of the JPL Cal/Val team

Virtual OSTST 2020, October 19-23
The updates in the TOPEX products since their last release (MGDR-B) cover all components.

<table>
<thead>
<tr>
<th>Components</th>
<th>MGDR-B</th>
<th>GDR-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altimeter parameters</td>
<td>Onboard</td>
<td>Numerical Retracking</td>
</tr>
<tr>
<td>Range correction</td>
<td>Onboard</td>
<td>Numerical Retracking</td>
</tr>
<tr>
<td>Sigma0 correction</td>
<td>Onboard</td>
<td>Numerical Retracking</td>
</tr>
<tr>
<td>Radiometer Sigma0 attenuation</td>
<td>Wallops Cal1</td>
<td>Numerical Retracking</td>
</tr>
<tr>
<td>Radiometer wet path delay</td>
<td>Wallops Climatological</td>
<td>Calibrated</td>
</tr>
<tr>
<td>Dry tropospheric correction</td>
<td>Uncalibrated</td>
<td>Calibrated + coastal retrieval</td>
</tr>
<tr>
<td>Model wet path delay</td>
<td>Uncalibrated</td>
<td></td>
</tr>
<tr>
<td>Sea State Bias</td>
<td>ECMWF Operational (no S1/S2)</td>
<td>ERA Interim + S1/S2</td>
</tr>
<tr>
<td>Wind speed</td>
<td>ECMWF Operational</td>
<td>ERA Interim</td>
</tr>
<tr>
<td>Orbits</td>
<td>Parametric (Gaspar et al., 1994)</td>
<td>Non-Parametric (Putnam et al., 2020), TBC</td>
</tr>
<tr>
<td>Geophysical corrections</td>
<td>Operational: GSFC and CNES</td>
<td>Collard (2005)</td>
</tr>
<tr>
<td></td>
<td>1990s standards</td>
<td>Reprocessed ITRF14: GSFC and CNES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GDR-F</td>
</tr>
</tbody>
</table>
How does each component update influence the final sea surface height anomaly (SSHA)?

In answering this question, this presentation examines three metrics:

1. The SSHA curve
2. Timeseries of SSHA crossover RMS
3. Maps of SSHA crossover means

For each metric, we first start with the original MGDR-B SSHA version, then subsequently replace targeted MGDR-B components with their GDR-F equivalent, and ultimately recover the full GDR-F SSHA.
Notes: 1) MGDR-B already has IB correction from GDR-F 2) Seasonality + bias have been removed, i.e., side-A vs side-B bias is not visible.
Adding GDR-F: Geophysical models (pole, solid earth, ocean tides, and MSS)

→ Induces ~3 mm level differences
Adding GDR-F: Orbit (GSFC)

=> ~3 mm drop over the last 90 cycles of side-A
Adding GDR-F: **Dry tropo**

- Removes mm-level 60-day signal that was due to omission of S1/S2 atmospheric tides in MGDR-B dry tropo model
Adding GDR-F: **Radiometer wet path delay**

End-of-mission recalibration of radiometer mitigates 1) ~4mm 60-day signal caused by yaw-state dependent thermal environment, 2) -0.9 mm/yr drift over side A.
Adding GDR-F: Sea state bias (Putnam et al., OSTST 2020)

Waveform retracking mitigates SWH degradation, especially at end of side A, and reduces drift from sea state bias.
Adding GDR-F:

Ionospheric correction

Ku- and C-band waveform retracking reduces +/- 3 mm temporal variation in ionosphere correction, primarily during side A.
Waveform retracking results with +/- 5 mm variations in range. Note: the MGDR-B range includes onboard Wallops correction.

Adding GDR-F: Numerically retracked range (Desjonquères et al., OSTST 2019)
Adding GDR-F: internal tide, high-frequency fluctuations, non-equil. ocean tide (new additions in GDR-F standard)

→ Reduces noise to sub-mm (remaining noise due to updates in flags)
How does each component update influence the final sea surface height anomaly (SSHA)?

1. **The SSHA curve**
 - The updates over side-B are stable in time and stochastic in nature, aside from the atmospheric path delays.
 - In contrast, side-A contains notable systematic differences between MGDR-B and GDR-F. The dominant difference stems from the numerically retracked ranges and reprocessed calibrations, which induce a cm-level, evolving signal (see Desjonquères et al., OSTST 2019). Accordingly, the ionosphere and SSB corrections also contribute several mms to SSHA differences at the end of side-A.
 - The update in geophysical models modifies the SSHA curve by a stochastic signal with an amplitude of ~3 mm.
 - The reprocessed radiometer data corroborate a near-mm/yr drift difference in the wet path delay over side-A.
 - The updated orbit also shows a 3-mm drop over the last 2.5 years of side-A.
 - The new wet and dry tropospheric path delays entail changes of mm-level, 60-day periodic signals.

2. **Timeseries of SSHA crossover RMS**
3. **Maps of SSHA crossover means**
How does each component update influence the final sea surface height anomaly (SSHA)?

1. **The SSHA curve**
 - The updates over side-B are stable in time and stochastic in nature, aside from the atmospheric path delays.
 - In contrast, side-A contains notable systematic differences between MGDR-B and GDR-F. The dominant difference stems from the numerically retracked ranges and reprocessed calibrations, which induce a cm-level, evolving signal (see Desjonquères et al., OSTST 2019). Accordingly, the ionosphere and SSB corrections also contribute several mms to SSHA differences at the end of side-A.
 - The update in geophysical models modifies the SSHA curve by a stochastic signal with an amplitude of ~3 mm.
 - The reprocessed radiometer data corroborate a near-mm/yr drift difference in the wet path delay over side-A.
 - The updated orbit also shows a 3-mm drop over the last 2.5 years of side-A.
 - The new wet and dry tropospheric path delays entail changes of mm-level, 60-day periodic signals.

2. **Timeseries of SSHA crossover RMS**

3. **Maps of SSHA crossover means**
The overall measurement performance remains stable over the two TOPEX sides.

Note: The crossover points are selected based on editing criteria that include latitude range of [-45; 45] degree, inverse barometric correction range of [-0.15; 0.15] m, altimeter wind speed range of [4; 10] m/s, and SWH range of [1; 4] m.
The total variance reduction for SSHA crossovers between MGDR-B and GDR-F is nearly 1000 mm2.

Part 2: Xover RMS

- Using the GDR-F geophysical models leads to a variance reduction of 437 mm2 – the largest reduction observed. Using the GDR-F orbits also leads to a large variance reduction of 275 mm2.
- Adding internal-tide, ocean tide non-equil, and high-frequency fluctuations together reduce variance by 228 mm2. The high-frequency fluctuations component is the main contributor.
How does each component update influence the final sea surface height anomaly (SSHA)?

1. **The SSHA curve**
 - The updates over side-B are stable in time and stochastic in nature, aside from the atmospheric path delays.
 - In contrast, side-A contains notable systematic differences between MGDR-B and GDR-F. The dominant difference stems from the numerically retracked ranges and reprocessed calibrations, which induce a cm-level, evolving signal (see Desjonquères et al., OSTST 2019). Accordingly, the ionosphere and SSB corrections also contribute several mms to SSHA differences at the end of side-A.
 - The update in geophysical models modifies the SSHA curve by a stochastic signal with an amplitude of ~3 mm.
 - The reprocessed radiometer data corroborate a near-mm/yr drift difference in the wet path delay over side-A.
 - The updated orbit also shows a 3-mm drop over the last 2.5 years of side-A.
 - The new wet and dry tropospheric path delays entail changes of mm-level, 60-day periodic signals.

2. **Timeseries of SSHA crossover RMS**
 - The dominant contributors to lowering variance from MGDR-B to GDR-F are the geophysical models, orbits, and high-frequency fluctuations; SSHA crossover variance is reduced by 437, 275, and 228 mm², respectively.
 - In contrast, the wet and dry tropospheric path delays contribute minimally.

3. **Maps of SSHA crossover means**
How does each component update influence the final sea surface height anomaly (SSHA)?

1. **The SSHA curve**
 - The updates over side-B are stable in time and stochastic in nature, aside from the atmospheric path delays.
 - In contrast, side-A contains notable systematic differences between MGDR-B and GDR-F. The dominant difference stems from the numerically retracked ranges and reprocessed calibrations, which induce a cm-level, evolving signal (see Desjonquères et al., OSTST 2019). Accordingly, the ionosphere and SSB corrections also contribute several mms to SSHA differences at the end of side-A.
 - The update in geophysical models modifies the SSHA curve by a stochastic signal with an amplitude of ~3 mm.
 - The reprocessed radiometer data corroborate a near-mm/yr drift difference in the wet path delay over side-A.
 - The updated orbit also shows a 3-mm drop over the last 2.5 years of side-A.
 - The new wet and dry tropospheric path delays entail changes of mm-level, 60-day periodic signals.

2. **Timeseries of SSHA crossover RMS**
 - The dominant contributors to lowering variance from MGDR-B to GDR-F are the geophysical models, orbits, and high-frequency fluctuations; SSHA crossover variance is reduced by 437, 275, and 228 mm², respectively.
 - In contrast, the wet and dry tropospheric path delays contribute minimally.

3. **Maps of SSHA crossover means**
The maps of mean SSHA crossovers show smaller geographically-correlated errors in GDR-F.
Starting solution is MGDR-B

Xover mean wrt previous solution [cm] NA

Difference wrt Xover mean MGDR-B [cm]

Part 3: Side-A xover maps

Difference wrt Xover mean GDR-F [cm]
Adding GDR-F: Geophysical models (pole, solid earth, ocean tides and MSS)

Xover mean of intermediary SSHA solution [cm]

Difference wrt previous solution [cm]

Difference wrt Xover mean MGDR-B [cm]

Difference wrt Xover mean GDR-F [cm]
Adding GDR-F: Orbit (GSFC)

Xover mean of intermediary SSHA solution [cm]

Difference wrt Xover mean MGDR-B [cm]

Difference wrt previous solution [cm]

Difference wrt Xover mean GDR-F [cm]
Adding GDR-F: Dry tropo

Xover mean of intermediary SSHA solution [cm]

Difference wrt Xover mean MGDR-B [cm]

Difference wrt previous solution [cm]

Difference wrt Xover mean GDR-F [cm]
Adding GDR-F: Radiometer wet path delay

Xover mean of intermediary SSHA solution [cm]

Difference wrt Xover mean MGDR-B [cm]

Difference wrt previous solution [cm]

Difference wrt Xover mean GDR-F [cm]
Adding GDR-F: Sea state bias (Putnam et al., OSTST 2020)

- Xover mean of intermediary SSHA solution [cm]
- Difference wrt Xover mean MGDR-B [cm]
- Difference wrt previous solution [cm]
- Difference wrt Xover mean GDR-F [cm]
Adding GDR-F: Ionospheric correction

Xover mean of intermediary SSHA solution [cm]

Difference wrt Xover mean MGDR-B [cm]

Difference wrt previous solution [cm]

Difference wrt Xover mean GDR-F [cm]
Adding GDR-F: Numerically retracked range (Desjonquères et al., OSTST 2019)

Xover mean of intermediary SSHA solution [cm]

Difference wrt Xover mean MGDR-B [cm]

Difference wrt previous solution [cm]

Difference wrt Xover mean GDR-F [cm]
Adding GDR-F: \textbf{Internal tide, HF fluct., non-equil. ocean tide}

- **Xover mean of intermediary SSHA solution [cm]**
- **Difference wrt Xover mean MGDR-B [cm]**
- **Difference wrt previous solution [cm]**
- **Difference wrt Xover mean GDR-F [cm]**
The maps of mean SSHA crossovers show smaller geographically-correlated errors in GDR-F.
Starting solution is MGDR-B

Xover mean of intermediary SSHA solution [cm]

Difference wrt Xover mean MGDR-B [cm]

Difference wrt previous solution [cm] NA

Difference wrt Xover mean GDR-F [cm]
Adding GDR-F: Geophysical models (pole, solid earth, ocean tides and MSS)

Xover mean of intermediary SSHA solution [cm]

Difference wrt Xover mean MGDR-B [cm]

Difference wrt previous solution [cm]

Difference wrt Xover mean GDR-F [cm]
Adding GDR-F: Orbit (GSFC)

Xover mean of intermediary SSHA solution [cm]

Difference wrt Xover mean MGDR-B [cm]

Difference wrt previous solution [cm]

Difference wrt Xover mean GDR-F [cm]
Adding GDR-F: Dry tropo

Xover mean of intermediary SSHA solution [cm]

Difference wrt Xover mean MGDR-B [cm]

Difference wrt previous solution [cm]

Difference wrt Xover mean GDR-F [cm]
Adding GDR-F: Radiometer wet path delay

Xover mean of intermediary SSHA solution [cm]

Difference wrt Xover mean MGDR-B [cm]

Difference wrt previous solution [cm]

Difference wrt Xover mean GDR-F [cm]
Adding GDR-F: Sea state bias (Putnam et al., OSTST 2020)

Xover mean of intermediary SSHA solution [cm]

Difference wrt Xover mean MGDR-B [cm]

Difference wrt previous solution [cm]

Difference wrt Xover mean GDR-F [cm]
Adding GDR-F: Ionospheric correction

Xover mean of intermediary SSHA solution [cm]

Difference wrt Xover mean MGDR-B [cm]

Difference wrt previous solution [cm]

Difference wrt Xover mean GDR-F [cm]
Adding GDR-F: Numerically retracked range (Desjonquères et al., OSTST 2019)

Xover mean of intermediary SSHA solution [cm]

Difference wrt Xover mean MGDR-B [cm]

Difference wrt previous solution [cm]

Difference wrt Xover mean GDR-F [cm]
Adding GDR-F: **Internal tide, HF fluct., non-equil. ocean tide**

Xover mean of intermediary SSHA solution [cm]

Difference wrt Xover mean MGDR-B [cm]

Difference wrt previous solution [cm]

Difference wrt Xover mean GDR-F [cm]
How does each component update influence the final sea surface height anomaly (SSHA)?

1. The SSHA curve
 - The updates over side-B are stable in time and stochastic in nature, aside from the atmospheric path delays.
 - In contrast, side-A contains notable systematic differences between MGDR-B and GDR-F. The dominant difference stems from the numerically retracked ranges and reprocessed calibrations, which induce a cm-level, evolving signal (see Desjonquères et al., OSTST 2019). Accordingly, the ionosphere and SSB corrections also contribute several mms to SSHA differences at the end of side-A.
 - The update in geophysical models modifies the SSHA curve by a stochastic signal with an amplitude of ~3 mm.
 - The reprocessed radiometer data corroborate a near-mm/yr drift difference in the wet path delay over side-A.
 - The updated orbit also shows a 3-mm drop over the last 2.5 years of side-A.
 - The new wet and dry tropospheric path delays entail changes of mm-level, 60-day periodic signals.

2. Timeseries of SSHA crossover RMS
 - The dominant contributors to lowering variance from MGDR-B to GDR-F are the geophysical models, orbits, and high-frequency fluctuations; SSHA crossover variance is reduced by 437, 275, and 228 mm², respectively.
 - In contrast, the wet and dry tropospheric path delays contribute minimally.

3. Maps of SSHA crossover means
 - Geographically-correlated errors (GCE) are considerably reduced from MGDR-B (~4 cm) to GDR-F (~1 cm).
 - The orbit update explains a large majority (~3 cm) of the reduction in GCE amplitude.
 - The ~2 cm-level hemispheric bias is greatly attenuated with the update in ranges and associated SSB and ionospheric corrections. The bias essentially disappears in side-B and remains at a mm-level in side-A.
 - The new geophysical models remove cm-level, homogenously-distributed noise.
Summary

• The TOPEX side-A and side-B products have been generated using:
 o Ground retracking (Des jonquères et al, OSTST 2019)
 o Reprocessed TMR (JPL)
 o ITRF14 orbit solutions (GSFC and CNES)
 o GDR-F geophysical models (CNES)
• Ongoing work processing Poseidon 1 waveforms (Bignalet-Cazalet, OSTST 2020) using:
 o Onboard SMLE3 before 1995 (waveforms unavailable)
 o Ground retracking after 1995 (Thibaut, 2017)
 o POE-F orbit solution (CNES)
 o GDR-F geophysical models (CNES)
• Product release for TOPEX and Poseidon is expected early 2021
• Acknowledgements: CNES/CLS for the geophysical models, CNES/CLS Cal/Val team, CU and UNH SSB teams, CNES and GSFC POD teams.