Multi-mission calibrations results at the Permanent Facility for altimetry calibration in west Crete, Greece attaining Fiducial Reference Measurement Standards

Mertikas, Stelios1; Craig Donlon2; Constantin Mavrocordatos3; Pierre Féménias3; Demetris Galanakis4; Ilias Tziavos5; Francois Boy6; George Vergos6; Ole-Baltazar Andersen7

1Technical University of Crete, Geodesy and Geomatics Engineering Lab, University Campus, GR-73100, Chania, Crete, Greece, mail:mertikas@mred.tuc.gr;
2ESA/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk ZH, The Netherlands; 3ESA/ESRIN, Via Galileo Galilei, I-00044 Frascati, Italy; 4Space Geomatica, Chania, Greece; 5Aristotle University of Thessaloniki, Greece/CNES, Toulouse, France; 6DTU Space, Danish Space Institute, Lyngby, Denmark; 7National Satellite Ocean Application Service, Beijing, China.

Abstract

This work presents the updated results for the calibration & validation of several altimeter satellites (Jason-2, Jason-3, Sentinel-3, CryoSat-2, HY-2) determined at the permanent facility for altimetry calibration, west Crete, Greece. These absolute Cal/Val results are obtained using sea-surface and transponder techniques followed by uncertainty budgets at metrology standards. This new concept of Fiducial Reference Measurement for Altimetry is recommended by ESA to start producing Earth observation results for the future in terms of well-characterized SI units, so they are reliable, comparable world-wide and also linked to other areas of science and technology. The latest Cal/Val absolute bias results are given at first for the Jason-2 & Jason-3 based upon the descending Pass No.18 but also on the ascending No.109, with GDR-D data at sea and on land with the transponder at the CDN1 Cal/Val site. Biases are also provided for the Sentinel-3A with the ascending orbit No.14 setting out with the transponder in the mountains of Crete and continuing on the same orbit with the sea-surface infrastructure in the south of Gavdos island. Altimeter bias results over sea surface are also produced for Sentinel-3A based on descending pass No. 335 passing over Gavdos. Using the CRS1 Cal/Val site in west Crete, results for the bias of the Chinese HY-2A satellite altimeter bias is also presented using I-GDR data for its descending Pass No.280 (Cycles 1-101). Relative biases are also presented at crossover locations for several altimeters in the vicinity of the permanent facility for altimeter calibration. Future plans for the upscaling of this infrastructure and for improving the derived results will also be presented.

1. The Permanent Altimeter Calibration Facility-PFAC: Location & Infrastructure

Regional GNSS network of continuously operating stations for:
(a) absolute positioning, and
(b) atmosphere propagation errors monitoring

2. Satellite Altimetry Calibration & Validation Techniques

2.1 Absolute Direct
On land at the CDN1 transponder Cal/Val

2.2 Absolute Indirect @ Sea
Gavdos, CRS1 & RDK1 Cal/Val sites

2.3 Relative Direct
X-over Cal/Val on land and at sea

2.4. Inter-comparison & validation of results

3.1 Absolute Direct (transponder JA3, S3A)

Jason-3 range bias, Cycles 3-48, I-GDR Pass No.18 (Descending)

Sentinel-3A range bias, Cycles 3-31, Pass No. 14 (Ascending)

3.2 Absolute Indirect (Sea-Surface Cal/Val)

Jason-3 SSH bias, Pass No.109 (Ascending), Pass No. 18 (Descending)

Sentinel-3 SSH bias, Pass No.14 (Ascending), Pass No. 335 (Descending)

Chinese HY-2A, Cycles Pass No.18-descending

3.3 Relative Direct (X-Over)

4. Conclusions & future plans

- PFAC continues to provide Cal/Val for Jason, Sentinel-3 & HY-2;
- Absolute direct range bias with a transponder at CDN1 Cal/Val;
- Diverse techniques reduce uncertainty on final bias estimation;
- Uncertainty budget estimated following Fiducial Reference Measurement standards, see Poster CVL_002;
- Preparations for S3-B, Jason-CS/Sentinel-6 & SWOT Cal/Val.

Acknowledgments

Part of this work has been produced with the financial assistance of the European Union. The views expressed in this paper do not necessarily reflect the official opinion of the European Union and the European Space Agency

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Transponder</th>
<th>Sea-Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>JA3, P18</td>
<td>+2.91cm ± 2.5cm</td>
<td>-0.8cm ± 0.5cm</td>
</tr>
<tr>
<td>JA3, P109</td>
<td>N/A</td>
<td>-0.7cm ± 0.5cm</td>
</tr>
<tr>
<td>S3A, P14</td>
<td>+0.03cm ± 1.2cm</td>
<td>+0.8cm ± 0.5cm</td>
</tr>
<tr>
<td>S3A, P315</td>
<td>N/A</td>
<td>+ 0.4cm ± 0.8cm</td>
</tr>
<tr>
<td>HY-2, P208</td>
<td>N/A</td>
<td>Linear trend</td>
</tr>
</tbody>
</table>

5 Aristotle University of Thessaloniki, Greece/CNES, Toulouse, France; 6DTU Space, Danish Space Institute, Lyngby, Denmark; 7National Satellite Ocean Application Service, Beijing, China.