Assessment of ICESat-2 for the Recovery of Ocean Topography

ICESat-2

Yao Yu (yayu@ucsd.edu)
David Sandwell
Sarah Gille
Ana Beatriz Villas Bôas

Scripps Institution of Oceanography

Launch date: September 15, 2018

(figure credit: Smith et al., 2019)
Abstract

The Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) laser altimetry mission, launched in September 2018, uses 6 parallel lidar tracks with very fine along-track resolution (15 m) to measure the topography of ice, land, and ocean surfaces. Here we assess the ability of ICESat-2 ocean data to recover oceanographic signals ranging from surface gravity waves (wavelengths from 30 m to 1000 m) to the marine geoid (wavelengths > 16 km). We focus on a region in the tropical Pacific and study photon height data in both the wavenumber and space domain. Results show that ICESat-2 can recover the marine geoid at wavelengths > 16 km which is similar to the best radar altimeter data. At some times, the amplitude, wavelength, and propagation direction of surface gravity waves are resolved by using a combination of the strong and weak beams, which are separated by 90 m. We find higher than expected power in the 3 km to 20 km wavelength band where geoid and ocean signals should be small. This artificial power is caused by the projection of large amplitude, 2-D surface waves from ~300 m wavelengths into longer wavelengths (5-10 km) because of the 1-D sampling along the narrow ICESat-2 profile. Thus ICESat-2 will not provide major improvements to the geoid in most of the ocean, although it may be valuable in regions where wave heights are generally low.
SSH (ocean topography) = MSS + oceanic variabilities (SLA) + error

- **Ocean topography**
 - **Surface waves (<1 km):**
 - How do surface waves contaminate ICESat-2 observations?
 - **Intermediate band (1-20 km):**
 - What is the origin of the height signals in the 3 km to 20 km wavelength range?
 - **MSS (>20 km):**
 - Can the ICESat-2 ocean data be used to improve the MSS?

MSS = geoid + ocean dynamic topography
Introduction

ICESat-2 products

ATL03:
- sampling rate: 10 kHz (0.7m)
- Footprint size: 17m
- Noise, Buffer, Low, Medium, High
- x-y location uncertainty: 10 m

ATL12:
- Resolution: varies, 70m to 7km (> 4km in tropical Pacific)
- Aims to achieve standard errors in mean sea surface height of 1 cm or better

Not released yet

https://nsidc.org/data/icesat-2
Introduction

Example: ICESat-2 geolocated photon SSH

(beam 1l, track: 0394; cycle: 02; sensing time: 2019/01/23)
SSH (ref. WGS84) PSD in tropical Pacific (-120/-100/-11/-1)

Wavenumber domain

Figure 1. Averaged SSH power spectral density in the Pacific box. The spectrum can be divided into three bands representing the longer wavelength mean sea surface (MSS, 20-500 km), the shorter wavelength surface gravity waves (< 3 km), and the more poorly understood intermediate wavelength (3-20 km) band. The 99% confidence interval is shaded in red.

Data processing:
- Geophysical corrections;
- Low-pass filtered at 30m;
- Lomb-Scargle periodogram (341 averaging)

MSS: > 20 km
intermediate band (3-20 km): 1 km - 20 km
gravity waves: < 1 km
Spectral coherence

Figure 2. (a) Coherence and (c) phase between beams 1l-2l, 2l-3l, 1l-3l of a selected ICESat-2 track (ground track: 0394, cycle: 02). Coherence falls to below 95% CL at ~20 km. (b) Coherence and (d) phase between MSS and each strong beam. Black line is the coherence between 20Hz Jason-2 and MSS. Coherence falls to below 95% CL at ~16 km for both the ICESat-2 and the Jason-2 cases.

(ICESat-2: track: 0394; cycle: 02; sensing time: 2019/01/23)
ICESat-2 SSH (low-pass filtered at 20km)

Data processing:
- MSS at beam 2l's position;
- Beam 1l and 3l have been corrected for MSS cross-track difference;
- Linear trend removed.

Figure 3. (a) SSH of ICESat-2 3 strong beams (ground track: 0394, cycle: 02) along with MSS at beam 2l’s position. Data are low-pass filtered at 20 km, and the linear trend of beam 2l has been removed from all four height series. The MSS is offset for plotting. (b) a shorter segment with no MSS offset. Tracks run almost (North-South) N-S so 1° in latitude corresponds to ~110 km along track.

Where does the cross-track difference (~0.3m) come from?
Figure 4. (a) SLA of ICESat-2 3 strong beams (ground track: 0394, cycle: 02). (b) a shorter segment of (a) showing peak to trough variations having wavelengths of a few hundreds of meters. Tracks run almost N-S so 1° corresponds to ~110 km along track and each 0.002° grid in (b) is about 200 m.
Significant Wave Height

Data processing:
- Remove MSS from SSH to get SLA
- 4 × 3km-running standard deviation of SLA
- Low-pass filter at 3km

Figure 5. (a) SWH calculated from 3km-running standard deviation of SLA from ICESat-2 3 strong beams (ground track: 0394, cycle: 02). Background light dots are significant wave height before filtering and darker lines are low-pass filtered at 6 km so that they resemble the 1Hz averaged SWH in radar altimetry. (b) a shorter segment of (a). Tracks run almost N-S so 1° corresponds to ~110 km along track.
Space domain: surface waves

Dominant ocean wave reconstruction: an example

Observed wavelength: 465.5m
Phase shift: -70.3°.

Phase shift sources:
- Angle between orbit and wave
- Weak beams leads by 2.5km (error)

Figure 6. (a) a small segment of ICESat-2 photon height data w.r.t WGS 84. (ground track: 0326, cycle: 01). The strong and weak beams are separated by 90 m and both are low-pass filtered at 30 m. (b) Coherence and (c) phase between beams 1l and 1r. Coherence peaks around 465 m and the corresponding phase shift is -70.3°. The 95% and 99% CL are labeled.

(date:2018/10/20, ground track: 0326, cycle: 01, 1l & 1r).
Dominant ocean wave reconstruction: an example

\[\lambda' = \frac{\lambda}{\cos(\theta)} = 380 \text{ m} \]

Phase shift = \(L \tan(\theta) / \lambda' \times 360^\circ \)

ICESat-2 reconstruction:

\[\lambda = 327 \text{ m} \]

Direction: 223.3°

i.e. 0 deg => coming from North; 90 deg => coming from East

WAVEWATCH III

Lat: -21
Lon: -138
\(T = 14.68 \text{ s} \)
\(\lambda = 336 \text{ m} \)
Direction: 209.8°
Figure 7. Joint probability histograms for wavelength (a) and wave directions (b) of WAVEWATCH III (WW3) predictions and ICESat-2 (IS2) reconstructions. The black dotted line is the 1:1 relationship and the red line is the best fitted slope. Histogram of (c) wavelength and (d) direction differences between IS2 reconstructions and WW3 predictions.
Figure 8. (a) Low-pass filtered (3 km and sampled at 50 m) SLA. Missing data were not included in the filter. (b) a shorter segment of (a). Tracks run almost N-S so 1° corresponds to ~110 km along track.

large signals (0.1-0.2 m) with wavelengths of 5-10 km: what are they?
Figure 9. (a) Directional spectrum from CDIP station Point Reyes at time: 2019-09-29, 19:00 UTC. Energy density is in dB so as to show a large range of energy levels. The directional spectrum was computed using the maximum entropy method (Lygre et al., 1986). ICESat-2 orbit inclination is 92° and here we show a synthetic descending track. (b) grey: along-track PSD; blue: true PSD. Both are derived from the directional spectrum in (a).

Figure 10. (a) Synthetic SLA using CDIP directional spectrum in Figure 8 (a) and the positions of ICESat-2 track (ground track: 0394, cycle: 02). The SWH is 2.8m for all three beams. (b) 3km low-pass filtered synthetic SLA for a 100-km segment.
Conclusions

- ICESat-2 will not provide major improvements to the geoid in the open ocean.
- Surface waves will be projected to longer wavelength in the 1-D sampling of ICESat-2;
- The higher than expected signals in 3-20km wavelength come from aliasing from short-wavelength surface waves.
- A pair of strong and weak beams can be used to reconstruct the dominant surface wave.