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Ocean sea level high frequency dynamics corrections

m Ocean waves

Partially filtered out by instrument footprint size
Empirically removed bias

m  Storm surges
Shallow-water hydrodynamic simulations (hindcast)
Forcing physics: wind and pressure
Coastal resolution: 10 to 15 km alongshore

m Ocean tides
Empirical and semi-empirical (hydrodynamical modeling plus data assimilation)
Harmonic prediction
Coastal resolution: 2 to 7 km alongshore (FES2014)

m Present concerns
Open oceans: high mesoscale energy regions
Coastal ocean: insufficent resolution, higher error budget
High latitudes: higher error budget
Internal tides surface signal: not specifically corrected
Overall concern: weaker accuracy out of TP/Jason groundtrack
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Future requirements

m Improve data correction homogeneity
Narrow the gap in accuracy between open and coastal ocean
Narrow the gap in accuracy between low and high latitudes
Provide a seamless correction from open ocean toward shorelines

m Improve data coverage
Target a 1 km resolution along the coasts
Take care of transition areas (estuaries,...)

m Predict internal tide signature
Extent present knowledge out of TP/Jason groundtracks
Account for seasonal (or quicker) variability

m Proper ocean waves de-aliasing
Coastal wave setup
Infra-gravity waves
SWOT aliasing in high resolution mode

Also to be thought in perspective of altimetry CalVal and gravimetric mission needs
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FES2014 unstructured mesh

B Grid resolution
~10 km along shorelines
~20 km along shelf-break
~75 km in abyssal seas
(upgrade of FES mesh series)
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Model resolution/extent issue
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Coastal tides: lot’s of region to improve
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Hydrodynamical simulation accuracy improvement
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VAR(SSH with FES2014NEWComplet) - VAR(SSH with GOT4V10)
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Future requirements achievement needs:

Keep improving model realism/accuracy
Bathymetry, resolution, numerics, computational cost optimisation
Tidal physics:

Barotropic to baroclinic energy transfer (shallow-water modeling), loading/self-attraction terms, mean sea surface height (above geoids)
effects, floating ice friction, interaction with ocean circulation, ...

Storm surges physics:

Interaction with tides and ocean waves, wind stress derivation (bulk formula, ocean waves derived stress,...), atmospheric forcing time
sampling (1h?), loading/self-attraction terms, ...

2D versus 3D
Internal tide regional investigations (global models to heavy)

Manage increased computational load
Present shallow-water models will need a x10 to x100 number of DoFs

Prognostic 3D hydrodynamic models will be needed for internal tides
= Internal tides extraction from simulations is an issue (post-processing)

Data assimilation will grow with the square of hydrodynamics model size
Re-processing issue

Manage increased data (observations and corrections) archiving load
Correction data will follow model grid evolution
Seasonal tidal corrections (at least for IT)

Observational data size will increase with time and missions, will increase dramatically with SWOT
mission
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Conclusion

m  Need to redefine correction production system
Centralized computational centers
Performance assessments benchmarks
Close to data processing centers
Collaboration with atmospheric and oceanographic operational centers

m Imagine new data archiving/delivery formats/standard
Keep science applications tractable

SWOTcoastal/hydrology products issue: variable resolution/quick access
mapping (quad-trees?)

m Promote science collaboration

Dealing with ocean dynamical processes (non-linear) interactions will be
more and more important

Progress will need to combine more and more different type of expertises
Ultimate validation found in science applications







S
Loading/self-attraction investigations

Q

Q

Tackling CF/CME/CMEOA issue

Investigate resolution issue (structured versus unstructured
computational grid)

Anticipate non-uniform Earth deformation functions

Anticipate LSA forcing in non-tidal simulations (storm surges, etc)
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Structured versus unstructured radial displacements (M2, micro-metres)
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différence de déplacement M2 FES2014-FES99 (mm)
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Conclusions/further work

0 FES2014
O Unprecedented prior (hydrodynamic) solution accuracy
O Show improvements compared to all existing global tides atlases

O Clearly superior in shelf and costal seas
O Public release (including tidal currents) : June 2016 (CNES/AVISO)

O FES20XX preparation

Continue bathymetry improvement effort

Arctic seas investigations (Baffin Bay, Hudson bay)

Internal tide drag parameterisation based on actual ocean stratification
Increase coastal resolution to fit SWOT interferometer mission needs
Baroclinic tides investigations (3D simulations)
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