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This presentation illustrates the method
described in the paper:

https://www.frontiersin.org/articles/10.3389/fams.2019.00058

All codes necessary to reproduce the results
are openly available from:

https://github.com/brankart/ensdam



  

Motivations for these developments

Solve inverse problems within the Bayesian framework,

Using an MCMC sampler
to have an explicit description of posterior uncertainties

going beyond the Gaussian assumption,

Coping with nonlinear/nonlocal data constraints,
for instance dynamical or observation constraints,

With good numerical efficiency,
to stay applicable to large size problems.

Approach:
Design an efficient proposal distribution,
which can be sampled at a very low cost,

by a multiple Schur product from a multiscale prior ensemble



  

Potential application to altimetry

In the long term, the method should provide a model-free
alternative to data assimilation.

The freedom in the observational constraint should make it easy to
combine altimetry with complex data such as optical images to
retrieve surface currents, or ice characteristics to estimate ice

extent. 



  

Application example

A positive 2D field on the sphere 
with finite probability (~25%) to be equal to zero

Prior probability distribution known through an ensemble of size 100:

This can be for instance: precipitation, ice thickness, chlorophyll,... 
This can be generalized to multivariate problems with more dimensions.



  

True state and observations

True state
Independent draw

from the same distribution
as the prior ensemble 

Used to simulate the
synthetic observations and

to check the solution

Observations
local (blue)dots
and non-local:

position of the maximum

fraction of the sphere
where the field
is equal to zero



  

Anamorphosis

Nonlinear transformations to have
Gaussian marginal distributions

A stochastic transformation is used where the field is equal to zero
to cope with the concentration of probability



  

Scale separation

A multiscale ensemble is produced by extracting
the large-scale component of each ensemble member



  

Localization

The ensemble covariance is localized
by considering Schur products of one of the ensemble member
with the large-scale component of p other members (here, p=4)

Ensemble covariance C Larg-scale covariance C1

C1  ○  C1  ○  C1  ○  C1 covariance after localization



  

Ensemble augmentation

New ensemble members with the same local covariance structure
as the prior ensemble can then be generated
by randomly combining the Schur products

using Markov chains



  

Conditioning the ensemble to observations

Conditions to observations can then be applied
by including an acceptance probability (in the same Markov chains)

decreasing with the distance to observations (cost function)

True state Markov chain

Acceptance probability

Posterior ensemble



  

Nonlocal and nonlinear observations

Nonlocal and nonlinear constraints can be included, as illustrated
here for the position of the maximum (blue cross for the true state)

Conditioned to local observations
and to the position of the maximum

Conditioned to the position
of the maximum only

Conditioned
to local observations only

Prior ensemble



  

Scalability

Cost
Number of
iterations

Size of the
problem

Size of the
ensemble= x x

The algorithm is directly parallelizable
and the cost is linear w.r.t. the size of the problem

True state

Posterior ensemblePosition of the observations



  

First attempt with nadir altimetry

Black: “True” along-track SLA (simulated with NEMO model). Blue: Simulated
observation (truth+noise). Red: Prior ensemble. Green posterior ensemble.

SLA

Latitude



  

First attempt with wide-swath altimetry

Pseudo-observations from SWOT are simulated from a NEMO (NATL60)
model SLA field (left). The MCMC sampler is run constrained with the

observations (centre). Right: difference.



  

A generic approach that is applicable to several disciplines

The method is able to generate random fields subjected to
structural constraints, dynamical constraints and/or observational

constraints

Conclusions and perspectives

This can be an alternative to Gaussian ensemble data assimilation
approaches at a cost that remains about the same in many

situations

With the possibility to cope with nonlinear and nonlocal
observation operators

Practical implementation for altimetry is work in progress.
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