The Atlantic Contribution to Global Ocean Heat Content (OHC) variability on isopycnal layers
Sirpa Hakkinen?, Peter B. Rhines? and Denise L. Worthen?3
INASA Goddard Space Flight Center, Code 615, Greenbelt, MD 20771
2University of Washington, Box 357940, Seattle, WA 98195
3Wyle ITS and NASA Goddard Space Flight Center, Code 615, Greenbelt, MD 20771 note extreme rise

deep heat conten
ECMWEF-ORAS4 dz

ct
ing of the North Atlantic Ocean from 1950s to 2012 is NODC
ed in NODC observational data and three data

ysis products, on potential density surfaces and vertical
The net North Atlantic gain of 5 x 1022 J in the upper

is about 20%-30% of the global ocean gain over this

SODA
ECMWEF-ORAS4 /
GFDL-ECDA

(AN NN NN NN NN NNNENE N NN NN NN NN NN NN NN N

(b) ; (c)

and the North plus South Atlantic has 40-50% of the 0-2000m ] 700m-2000m I
eat gain. ] R R
yycnal layers vary in heat content mostly through their B w I

2ss and lateral extent, rather than variability of
ature/salinity ‘spice’. The layer o,=26.0-27.0

g subtropical mode water layer expresses more than

2 50-year heat gain. Yet Atlantic Multidecadal Variability

HC (1022)
o
o
S

' M '
| q/

| -1.0 - -
this trend unrepresentative of the spatial structure of /
g. Three Ocean State reanalyses and the NODC _IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII_
3se differ greatly in the deeper |ayer5 (00: 27.0 to 27_7)_ 1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010
tus’ in Atlantic warming during 2000-2010 occurs in o e i
1 & 5 Heat content evolution integrated over z-levels: 0 - 700m (a) and 0 - 2000m (b) and (c) 700m-2000m from NODC

the reanalyses whose mid-depth waters cool, while the (black), SODA (red), ORAS4 (green) and ECDA (blue) for 0-65N. Units are 10%2).
wo datasets show deep warming and reduced hiatus.

Reanalysis Datasets: SODA 2.2.8 Carton & Giese MWR 2008
ECMWF-ORAS4, Balmaseda & Trenberth GRL 2013
GFDL-ECDA, Chang et al. Clim.Dyn 2013
plus NODC data, Levitus GRL 2012
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total OHC trend = isopycnal layer thickening + ©/S ‘spice variability
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z-level evolution of NODC zonally integrated Atlantic OHC SODA isopycnal layer heat content (102° J per degree)

(integrated zonally 10%°J per degree of latitude, 1955-2012).

ONCLUSIONS
Warming of the North Atlantic Ocean is investigated in isopycnal layers and z-levels, based on three ocean reanalyses and NODC observed
dcean heat content (OHC) from the 1950s to present. Surface layer (0,<26) and subtropical mode water layer (0,=26-27) show more than %
he heat gain, largely in the North Atlantic Current/Gulf Stream region. Two deeper layers (06,=27-27.3) and (0,=27.3-27.7) show widely
liffering geography of warming, ranging from the Labrador Sea to the Mediterranean Overflow tongue.]

All 3 reanalyses show the layer thickness variability to determine the heat content changes, rather than ‘spice’/ watermass variability of 6
nd S; SODA and ECDA show that the two upper layer volumes have varied inversely with the two lower ones.




